836 research outputs found
Work hardening behavior in a steel with multiple TRIP mechanisms
Transformation induced plasticity (TRIP) behavior was studied in steel with
composition Fe-0.07C-2.85Si-15.3Mn-2.4Al-0.017N that exhibited two TRIP
mechanisms. The initial microstructure consisted of both {\epsilon}- and
{\alpha}-martensites with 27% retained austenite. TRIP behavior in the first 5%
strain was predominately austenite transforming to {\epsilon}-martensite (Stage
I), but upon saturation of Stage I, the {\epsilon}-martensite transformed to
{\alpha}-martensite (Stage II). Alloy segregation also affected the TRIP
behavior with alloy rich regions producing TRIP just prior to necking. This
behavior was explained by first principle calculations that revealed aluminum
significantly affected the stacking fault energy in Fe-Mn-Al-C steels by
decreasing the unstable stacking fault energy and promoting easy nucleation of
{\epsilon}-martensite. The addition of aluminum also raised the intrinsic
stacking fault energy and caused the {\epsilon}-martensite to be unstable and
transform to {\alpha}-martensite under further deformation. The two stage TRIP
behavior produced a high strain hardening exponent of 1.4 and led to ultimate
tensile strength of 1165 MPa and elongation to failure of 35%.Comment: submitted to Met. Mater. Trans. A manuscript E-TP-12-953-
Recommended from our members
Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry
Epitaxial CeO2 films with different thickness were grown on Y2O3 stabilised Zirconia substrates. Reduction of cerium ions at the interface between CeO2 films and yttria stabilised zirconia substrates is demonstrated using aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy. It is revealed that most of the Ce ions were reduced from Ce 4+ to Ce3+ at the interface region with a decay of several nanometers. Several possibilities of charge compensations are discussed. Irrespective of the details, such local non-stoichiometries are crucial not only for understanding charge transport in such hetero-structures but also for understanding ceria catalytic properties
Transport of Nordic Seas Overflow Water Into and Within the Irminger Sea: An Eddy-Resolving Simulation and Observations
Results from a climatologically forced, eddy-resolving (1/12 degrees) Atlantic simulation using the Hybrid Coordinate Ocean Model help clarify some presently unresolved connections between volume transports of Nordic Seas overflow water at key locations in the northernmost North Atlantic Ocean. The model results demonstrate that, in addition to the known westward flow through the Charlie Gibbs Fracture Zone (CGFZ), some Iceland Scotland overflow water (ISOW) flows westward through gaps in the Reykjanes Ridge north of the CGFZ into the Irminger Sea, and some flows southward along the eastern flank of the Mid-Atlantic Ridge into the West European Basin. These results provide insights into the well-known inconsistency between observed westward transport of ISOW through the CGFZ (2.4 Sv) and the transports upstream at Southeast of Iceland section (3.2 Sv) and downstream in the western Irminger Sea (4.5 Sv). Although the portion of the simulated ISOW that flows through CGFZ is about 500 m deeper than observed, the model results also show two ISOW pathways of this flow into the Irminger Sea, one northward along the western flank of the Reykjanes Ridge and the other westward before turning north-eastward on the western side of the Irminger Basin. Comparisons with the long-term moored instrument database in the Irminger Sea show that the model-based mean circulation is in reasonable agreement with observed volume transports of overflow water and that it gives approximately correct temperature and salinity characteristics
МНОГОФАЗНО-ОДНОФАЗНыЕ РЕВЕРСИВНыЕ ЭЛЕКТРОМАШИННО-ВЕНТИЛЬНыЕ ПРЕОБРАЗОВАТЕЛИ БЕСКОНТАКТНыХ МАШИН ДВОЙНОГО ПИТАНИЯ
Розглянуто процеси в багатофазно-однофазних реверсивних електромашинно-вентильних перетворю-
вачах безконтактних машин подвійного живлення.
Рассмотрены процессы в многофазно-однофазных реверсивных электромашинно-вентильных преобра-
зователях бесконтактных машин двойного питания
Effect of microstructure on the cyclic response and fatigue behavior of an XDTM aluminum metal matrix composite
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29121/1/0000160.pd
Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions
The thermoelectric properties of intermetallic compounds with Ce or Yb ions
are explained by the single-impurity Anderson model which takes into account
the crystal-field splitting of the 4{\it f} ground-state multiplet, and assumes
a strong Coulomb repulsion which restricts the number of {\it f} electrons or
{\it f} holes to for Ce and for Yb ions. Using
the non-crossing approximation and imposing the charge neutrality constraint on
the local scattering problem at each temperature and pressure, the excitation
spectrum and the transport coefficients of the model are obtained. The
thermopower calculated in such a way exhibits all the characteristic features
observed in Ce and Yb intermetallics. Calculating the effect of pressure on
various characteristic energy scales of the model, we obtain the phase
diagram which agrees with the experimental data on CeRuSi,
CeCuSi, CePdSi, and similar compounds. The evolution of the
thermopower and the electrical resistance as a function of temperature,
pressure or doping is explained in terms of the crossovers between various
fixed points of the model and the redistribution of the single-particle
spectral weight within the Fermi window.Comment: 13 pages, 11 figure
Atomic self-interaction correction for molecules and solids
We present an atomic orbital based approximate scheme for self-interaction
correction (SIC) to the local density approximation of density functional
theory. The method, based on the idea of Filippetti and Spaldin [Phys. Rev. B
67, 125109 (2003)], is implemented in a code using localized numerical atomic
orbital basis sets and is now suitable for both molecules and extended solids.
After deriving the fundamental equations as a non-variational approximation of
the self-consistent SIC theory, we present results for a wide range of
molecules and insulators. In particular, we investigate the effect of
re-scaling the self-interaction correction and we establish a link with the
existing atomic-like corrective scheme LDA+U. We find that when no re-scaling
is applied, i.e. when we consider the entire atomic correction, the Kohn-Sham
HOMO eigenvalue is a rather good approximation to the experimental ionization
potential for molecules. Similarly the HOMO eigenvalues of negatively charged
molecules reproduce closely the molecular affinities. In contrast a re-scaling
of about 50% is necessary to reproduce insulator bandgaps in solids, which
otherwise are largely overestimated. The method therefore represents a
Kohn-Sham based single-particle theory and offers good prospects for
applications where the actual position of the Kohn-Sham eigenvalues is
important, such as quantum transport.Comment: 16 pages, 7 figure
Effect of cold work on the recrystallized grain size in a particle-reinforced aluminum alloy
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29884/1/0000237.pd
- …