16,072 research outputs found

    Robust Beamforming for Secrecy Rate in Cooperative Cognitive Radio Multicast Communications

    Full text link
    In this paper, we propose a cooperative approach to improve the security of both primary and secondary systems in cognitive radio multicast communications. During their access to the frequency spectrum licensed to the primary users, the secondary unlicensed users assist the primary system in fortifying security by sending a jamming noise to the eavesdroppers, while simultaneously protect themselves from eavesdropping. The main objective of this work is to maximize the secrecy rate of the secondary system, while adhering to all individual primary users' secrecy rate constraints. In the case of passive eavesdroppers and imperfect channel state information knowledge at the transceivers, the utility function of interest is nonconcave and involved constraints are nonconvex, and thus, the optimal solutions are troublesome. To address this problem, we propose an iterative algorithm to arrive at a local optimum of the considered problem. The proposed iterative algorithm is guaranteed to achieve a Karush-Kuhn-Tucker solution.Comment: 6 pages, 4 figures, IEEE ICC 201

    Towards spectral-domain optical coherence tomography on a silicon chip

    Get PDF
    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these instruments bulky and costly. A significant decrease in the size and cost of an OCT system is possible through the use of integrated optics, allowing for compact and low-cost OCT systems, especially suited for applications in which instrument size may play an important role. In this work, we present a miniaturized spectral-domain OCT (SD-OCT) system. We design an arrayed waveguide grating (AWG) spectrometer in silicon oxynitride for the 1300-nm spectral range. The spectral range of the SD-OCT system near 1300 nm is specifically selected for skin imaging. We aim at 18-μm depth resolution (determined by the full width at half maximum values of the transmission spectrum of the AWG) and a 1-mm depth range (determined by the wavelength spacing per output waveguide). The free spectral range of 78 nm and wavelength resolution of 0.4 nm of the AWG are determined to meet these requirements. We use ahe fiber-based SD-OCT system with AWG spectrometer. The Michelson interferometer is illuminated using a superluminescent diode which has a Gaussian-like spectrum with a bandwidth of 40 nm and a central wavelength of 1300 nm. Via a circulator the light is coupled into a 90/10 beamsplitter. Polarization controllers are placed into both, sample and reference arm. The backreflected light is redirected through the optical circulator to the AWG spectrometer. The collimated beam is imaged with a camera lens onto a 46 kHz CCD linescan camera. The acquired spectra are processed by first subtracting the reference arm spectrum, then compensating the dispersion, and finally resampling to k-space. We achieve a depth range of 1mm. The measured signal-to-noise ratio (SNR) is 75 dB. The axial resolution (FWHM) is determined from a Gaussian fit to the point spread function in amplitude at various depths. A slight decrease in depth resolution is observed at higher depth ranges, which we attribute to misalignment and lens aberrations. As a demonstration of OCT imaging using the AWG spectrometer, an image of a layered phantom is recorded. The phantom consists of three layers of scattering medium (µs = 4 mm-1, refractive index n = 1.41) interleaved with non-scattering tape. We can observe all three scattering layers up to the maximum imaging depth of 1 mm

    Design and characterization of SiON integrated optics components for optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) is a technique for high resolution imaging of biological tissues with a depth range of a few millimeters. OCT is based on interferometry to enable depth ranging. Currently, optical components for OCT are rather bulky and expensive; the use of integrated optical circuits presents a great opportunity to reduce costs and enhance system functionality and performance. We present the design and characterization of SiON-based integrated optics waveguides, splitters, couplers and interferometers for OCT operating at a wavelength of 1.3 um

    Ion-implantation induced anomalous surface amorphization in silicon

    Get PDF
    Spectroscopic ellipsometry (SE), high-depth-resolution Rutherford backscattering (RBS) and channeling have been used to examine the surface damage formed by room temperature N and B implantation into silicon. For the analysis of the SE data we used the conventional method of assuming appropriate optical models and fitting the model parameters (layer thicknesses and volume fraction of the amorphous silicon component in the layers) by linear regression. The dependence of the thickness of the surface-damaged silicon layer (beneath the native oxide layer) on the implantation parameters was determined: the higher the dose, the thicker the disordered layer at the surface. The mechanism of the surface amorphization process is explained in relation to the ion beam induced layer-by-layer amorphization. The results demonstrate the applicability of Spectroscopic ellipsometry with a proper optical model. RBS, as an independent cross-checking method supported the constructed optical model

    QUANTITATIVE DETERMINATION AND PREPARATIVE ISOLATION OF TWO MAJOR ALKALOIDS FROM THE VIETNAMESE MEDICINAL HERB EVODIAE FRUCTUS

    Get PDF
    Objective: To develop a simple and accurate HPLC-DAD method for simultaneous determination, the content of major components: limonin, evodiamine, and rutaecarpine in Evodiae fructus and evaluation the quality of Evodiae fructus sold in markets. Methods: Open column chromatography was used to separate and purify rutaecarpine and evodiamine, the two major alkaloids from Evodiae fructus extract as a laboratory standard. Chromatographic separation was achieved using a Germini C18 column (150 mm × 4.6 mm I.D., 5 µm), detected at 210 nm. The mobile phase consisted of acetonitrile (A), methanol (B), and water (C). The validated method simultaneously determined alkaloid content in 40 batches of samples collected from markets in different regions of Vietnam. Results: In one-step purification, our method yielded 326 mg of rutaecarpine and 128 mg of evodiamine from 3.2 g of crude extract, with purities of 98.9 and 98.5%, respectively. The structures of these compounds were identified using 1H NMR and 13C NMR. There was a significant correlation between alkaloid content and fruit size, with a Spearman correlation coefficient of>0.5 (p<0.001), and there was a large difference in alkaloid contents between three maturity degrees of the fruit. Open-mouth fruits and fruits with average sizes of 4 to 6 mm had the highest alkaloid contents, whereas closed-mouth fruits had the lowest. Conclusion: This study provided information on the standardization and quality control of evodiamine and rutaecarpine in Evodiae fructus, as well as a foundation for further pharmacological and toxicological studies

    Gradual sub-lattice reduction and a new complexity for factoring polynomials

    Get PDF
    We present a lattice algorithm specifically designed for some classical applications of lattice reduction. The applications are for lattice bases with a generalized knapsack-type structure, where the target vectors are boundably short. For such applications, the complexity of the algorithm improves traditional lattice reduction by replacing some dependence on the bit-length of the input vectors by some dependence on the bound for the output vectors. If the bit-length of the target vectors is unrelated to the bit-length of the input, then our algorithm is only linear in the bit-length of the input entries, which is an improvement over the quadratic complexity floating-point LLL algorithms. To illustrate the usefulness of this algorithm we show that a direct application to factoring univariate polynomials over the integers leads to the first complexity bound improvement since 1984. A second application is algebraic number reconstruction, where a new complexity bound is obtained as well
    corecore