17 research outputs found

    Prompting for a conversation: How to control a dialog model?

    Full text link
    Dialog modelling faces a difficult trade-off. Models are trained on a large amount of text, yet their responses need to be limited to a desired scope and style of a dialog agent. Because the datasets used to achieve the former contain language that is not compatible with the latter, pre-trained dialog models are fine-tuned on smaller curated datasets. However, the fine-tuning process robs them of the ability to produce diverse responses, eventually reducing them to dull conversation partners. In this paper we investigate if prompting can mitigate the above trade-off. Specifically, we experiment with conditioning the prompt on the query, rather than training a single prompt for all queries. By following the intuition that freezing the pre-trained language model will conserve its expressivity, we find that compared to fine-tuning, prompting can achieve a higher BLEU score and substantially improve the diversity and novelty of the responses

    Benchmarking Compositionality with Formal Languages

    Get PDF
    Recombining known primitive concepts into larger novel combinations is a quintessentially human cognitive capability. Whether large neural models in NLP can acquire this ability while learning from data is an open question. In this paper, we investigate this problem from the perspective of formal languages. We use deterministic finite-state transducers to make an unbounded number of datasets with controllable properties governing compositionality. By randomly sampling over many transducers, we explore which of their properties contribute to learnability of a compositional relation by a neural network. We find that the models either learn the relations completely or not at all. The key is transition coverage, setting a soft learnability limit at 400 examples per transition

    An Ordinal Latent Variable Model of Conflict Intensity

    Full text link
    For the quantitative monitoring of international relations, political events are extracted from the news and parsed into "who-did-what-to-whom" patterns. This has resulted in large data collections which require aggregate statistics for analysis. The Goldstein Scale is an expert-based measure that ranks individual events on a one-dimensional scale from conflictual to cooperative. However, the scale disregards fatality counts as well as perpetrator and victim types involved in an event. This information is typically considered in qualitative conflict assessment. To address this limitation, we propose a probabilistic generative model over the full subject-predicate-quantifier-object tuples associated with an event. We treat conflict intensity as an interpretable, ordinal latent variable that correlates conflictual event types with high fatality counts. Taking a Bayesian approach, we learn a conflict intensity scale from data and find the optimal number of intensity classes. We evaluate the model by imputing missing data. Our scale proves to be more informative than the original Goldstein Scale in autoregressive forecasting and when compared with global online attention towards armed conflicts

    UniMorph 4.0:Universal Morphology

    Get PDF

    UniMorph 4.0:Universal Morphology

    Get PDF

    UniMorph 4.0:Universal Morphology

    Get PDF
    The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet

    UniMorph 4.0:Universal Morphology

    Get PDF

    From Case Law to Ratio Decidendi

    No full text
    corecore