42 research outputs found
Photoreflectance and surface photovoltage spectroscopy of beryllium-doped GaAs/AlAs multiple quantum wells
We present an optical study of beryllium delta-doped GaAs/AlAs multiple quantum well (QW) structures designed for sensing terahertz (THz) radiation. Photoreflectance (PR), surface photovoltage (SPV), and wavelength-modulated differential surface photovoltage (DSPV) spectra were measured in the structures with QW widths ranging from 3 to 20 nm and doping densities from 2×10(10) to 5×10(12) cm(–2) at room temperature. The PR spectra displayed Franz-Keldysh oscillations which enabled an estimation of the electric-field strength of ~20 kV/cm at the sample surface. By analyzing the SPV spectra we have determined that a buried interface rather than the sample surface mainly governs the SPV effect. The DSPV spectra revealed sharp features associated with excitonic interband transitions which energies were found to be in a good agreement with those calculated including the nonparabolicity of the energy bands. The dependence of the exciton linewidth broadening on the well width and the quantum index has shown that an average half monolayer well width fluctuations is mostly predominant broadening mechanism for QWs thinner than 10 nm. The line broadening in lightly doped QWs, thicker than 10 nm, was found to arise from thermal broadening with the contribution from Stark broadening due to random electric fields of the ionized impurities in the structures. We finally consider the possible influence of strong internal electric fields, QW imperfections, and doping level on the operation of THz sensors fabricated using the studied structures. © 2005 American Institute of Physic
Field effect transistors for terahertz detection - silicon versus III–V material issue
International audienceResonant frequencies of the two-dimensional plasma in FETs reach the THz range for nanometer transistor channels. Non-linear properties of the electron plasma are responsible for detection of THz radiation with FETs. Resonant excitation of plasma waves with sub-THz and THz radiation was demonstrated for short gate transistors at cryogenic temperatures. At room temperature, plasma oscillations are usually over-damped, but the FETs can still operate as efficient broadband THz detectors. The paper presents the main theoretical and experimental results on detection with FETs stressing their possible THz imaging applications. We discuss advantages and disadvantages of application of III-V GaAs and GaN HEMTs and silicon MOSFETs
Low-frequency noise properties of beryllium δ-doped GaAs/AlAs quantum wells near the Mott transition
Hot-Electron Effects in High-Resistivity InSb
We report that in the presence of random potential of the conduction band hot-electron transport can exhibit some novel features, some of which can be observed in dependencies of electric conductivity, mean electron energy and noise temperature on electric field strength
Investigation of Quantum Effects in Carbonaceous Materials Near the Metal-Insulator Transition by Means of THz Photoconductivity
A series of carbonaceous fibers with conductivity tuned to the metal-insulator transition were prepared by heat treatment of chemically modified polymer precursors. Peculiar behaviour of the resistivity versus temperature dependence R(T) at low temperatures suggests quantum corrections to the Drude conductivity due to weak localization and electron-electron interaction dominating in the conductivity. The THz conductivity method is employed to study the modification of the density of states and provides evidence for a strong change in density of states at the Fermi level caused by the quantum effects
Investigation of Quantum Effects in Carbonaceous Materials Near the Metal-Insulator Transition by Means of THz Photoconductivity
A series of carbonaceous fibers with conductivity tuned to the metal-insulator transition were prepared by heat treatment of chemically modified polymer precursors. Peculiar behaviour of the resistivity versus temperature dependence R(T) at low temperatures suggests quantum corrections to the Drude conductivity due to weak localization and electron-electron interaction dominating in the conductivity. The THz conductivity method is employed to study the modification of the density of states and provides evidence for a strong change in density of states at the Fermi level caused by the quantum effects
Dynamics of free carriers – neutral impurity related optical transitions in Be and Si d-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach
The dynamics of impurity-related optical transitions in 20 nm wide silicon and beryllium δ-doped GaAs/AlAs multiple quantum wells with various doping levels has been investigated at near liquid helium temperatures. The radiative lifetimes of the free electron-neutral acceptor and the free hole-neutral donor have been identified. The capture cross-sections of the free electrons by neutral Be acceptors were experimentally determined to σe-Be = 4 × 10–10 cm, whereas this corresponded to σh-Si = 2.2 × 10–8 cm for the free holes by neutral Si donors. The experimentally determined cross-section ratio of σh-Si/σe-Be = 55 is close to the estimated 2D value of σh-D /σe-A = 64 and remains lower compared to the calculated value for the 3D case of σh-D /σe-A = 121
Progress in development of the resonant tunneling diodes as promising compact sources at the THz gap bottom
In recent years remarkable progress has been made in filling the “terahertz gap” of compact sources from the “optical” side using quantum cascade lasers and difference frequency generation systems. On the “electronic” side the range up to 0.5 THz is covered by several devices like Gunn diodes, IMPATT diodes and HEMT transistors. However for the most difficult central range 0.5-2 THz, which includes frequencies for detection of explosives and several airborne threats, along with the popular semi-compact Schottky diodes based frequency multiplier systems, the resonant tunneling diodes (RTD) as micrometer-size range ultrafast electronic devices able to operate at room temperature may offer a real solution for the design of compact portable equipment. It has been predicted that frequency limit for operation of the RTDs may extend up to 3 THz if the problem of the low, microwatt-range output power could be solved. Over the last 10 years remarkable progress has been achieved in increasing the output power of RTDs by almost 2 orders of magnitude, and in extending the operation frequencies from earlier 0.7 THz range to the values near 2 THz, thus making RTDs competitive with the Schottky diode based multipliers. The chapter compares the RTDs with other compact THz sources and discusses the design approaches that have yielded remarkable increase of power and frequency of RTDs
Finite-Difference Time-Domain Simulation of Mid- and Far-Infrared Quantum Cascade Lasers
We present simulations of mid- and far-infrared quantum cascade lasers operating with/without external magnetic field. Maxwell-Bloch solver based on the finite-difference time-domain method was used in our investigation. Reduction of the far-infrared quantum cascade laser emission intensity is associated with increased optical losses in highly doped layers when magnetic field is changed from 4.2 T to 6.2 T. A simulated emission spectrum of mid-infrared disc-shaped quantum cascade laser with 60μm radius is consistent with the experimentally observed irregular spacing between quantum cascade laser emission lines