444 research outputs found

    A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs

    Get PDF
    SummaryThere is an urgent need to establish a fundamental understanding of the mechanisms of nanomaterial (NM) interaction with living systems and the environment, in order for regulation of NMs to keep pace with their increasing industrial application. Identification of critical properties (physicochemical descriptors) that confer the ability to induce harm in biological systems is crucial, enabling both prediction of impacts from related NMs (via quantitative nanostructure–activity relationships (QNARs) and read-across approaches) and development of strategies to ensure these features are avoided or minimised in NM production in the future (“safety by design”). A number of challenges to successful implementation of such a strategy exist, including: (i) the lack of widely available systematically varied libraries of NMs to enable generation of sufficiently robust datasets for development and validation of QNARs; (ii) the fact that many physicochemical properties of pristine NMs are inter-related and thus cannot be varied systematically in isolation from others (e.g. increasing surface charge may impact on hydrophobicity, or changing the shape of a NM may introduce defects or alter the atomic configuration of the surface); and (iii) the effect of ageing, transformation and biomolecule coating of NMs under environmental or biological conditions.A novel approach to identify interlinked physicochemical properties, and on this basis identify overarching descriptors (axes or principle components) which can be used to correlate with toxicity is proposed. An example of the approach is provided, using three principle components which we suggest can be utilised to fully describe each NM, these being the intrinsic (inherent) properties of the NM, composition (which we propose as a separate parameter) and extrinsic properties (interaction with media, molecular coronas etc.)

    Environmental context determines the impact of titanium oxide and silver nanoparticles on the functioning of intertidal microalgal biofilms

    Get PDF
    Coastal environments are receiving habitats for most nanoparticle (NP) waste. Coastal sediments, into which NPs accumulate, support microalgal biofilms that provide important ecosystem processes: primary production, enhanced sediment stabilisation, and nutrient recycling. We assessed the impact of realistic concentrations of titanium oxide (TiO₂) and silver (Ag) NPs on marine microalgal biofilms and associated ecosystem processes in simulated natural conditions, by exposing natural biofilms to TiO₂ and Ag-NPs for one-month periods in outdoor tidal mesocosms under three contrasted environmental contexts (seasons). Ag-NPs had no significant effects on microalgal biomass, sediment biostabilisation potential and sediment–water oxygen and nutrient fluxes, even at concentrations (25 μg l¯¹) higher than current estimated levels (25 ng l¯¹). TiO₂-NPs had no significant effect at current expected concentrations (25 μg l¯¹), but higher concentrations (25 mg l¯¹) resulted in decreased microalgal biomass; decreased ability of biofilms to biostabilise sediment, therefore limiting their coastal protection potential; reduced primary production and modified nutrient recycling. TiO₂-NPs impacts were dependent on the environmental context: most effect was seen in winter, while no toxicity on biofilms was demonstrated in early spring. Our findings demonstrate that while Ag-NPs, being liable to dissolution into Ag+ ions under the conditions tested, are not expected to have an environmental impact if current predictions of environmental loading prevail, TiO₂-NPs may have ecological consequences in coastal environments in addition to direct impacts on microbial biomass
    corecore