62 research outputs found
The Study of the Heisenberg-Euler Lagrangian and Some of its Applications
The Heisenberg-Euler Lagrangian is not only a topic of fundamental interest,
but also has a rich variety of diverse applications in astrophysics, nonlinear
optics and elementary particle physics etc. We discuss the series
representation of this Lagrangian and a few of its applications in this study.
[In an appendix, we discuss issues related to the renormalization - and the
renormalization-group invariance - of the Heisenberg-Euler Lagrangian and its
two-loop generalization.]Comment: 12 pages, LaTeX; Proceedings of the MRST-2003 conference; talk given
by S. R. Vallur
Lamm, Valluri, Jentschura and Weniger comment on "A Convergent Series for the QED Effective Action" by Cho and Pak [Phys. Rev. Lett. vol. 86, pp. 1947-1950 (2001)]
Complete results were obtained by us in [Can. J. Phys. 71, 389 (1993)] for
convergent series representations of both the real and the imaginary part of
the QED effective action; these derivations were based on correct intermediate
steps. In this comment, we argue that the physical significance of the
"logarithmic correction term" found by Cho and Pak in [Phys. Rev. Lett. 86,
1947 (2001)] in comparison to the usual expression for the QED effective action
remains to be demonstrated. Further information on related subjects can be
found in Appendix A of hep-ph/0308223 and in hep-th/0210240.Comment: 1 page, RevTeX; only "meta-data" update
QED Effective Action Revisited
The derivation of a convergent series representation for the quantum
electrodynamic effective action obtained by two of us (S.R.V. and D.R.L.) in
[Can. J. Phys. vol. 71, p. 389 (1993)] is reexamined. We present more details
of our original derivation. Moreover, we discuss the relation of the
electric-magnetic duality to the integral representation for the effective
action, and we consider the application of nonlinear convergence acceleration
techniques which permit the efficient and reliable numerical evaluation of the
quantum correction to the Maxwell Lagrangian.Comment: 20 pages, LaTeX, 1 table; minor additions and adjustments; to appear
in Can. J. Phy
Inelastic Processes in the Collision of Relativistic Highly Charged Ions with Atoms
A general expression for the cross sections of inelastic collisions of fast
(including relativistic) multicharged ions with atoms which is based on the
genelazition of the eikonal approximation is derived. This expression is
applicable for wide range of collision energy and has the standard
nonrelativistic limit and in the ultrarelativistic limit coincides with the
Baltz's exact solution ~\cite{art13} of the Dirac equation. As an application
of the obtained result the following processes are calculated: the excitation
and ionization cross sections of hydrogenlike atom; the single and double
excitation and ionization of heliumlike atom; the multiply ionization of neon
and argon atoms; the probability and cross section of K-vacancy production in
the relativistic collision. The simple analytic formulae
for the cross sections of inelastic collisions and the recurrence relations
between the ionization cross sections of different multiplicities are also
obtained. Comparison of our results with the experimental data and the results
of other calculations are given.Comment: 25 pages, latex, 7 figures avialable upon request,submitted to PR
Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a
survey covering 14,000 deg over five years to constrain the cosmic
expansion history through precise measurements of Baryon Acoustic Oscillations
(BAO). The scientific program for DESI was evaluated during a five month Survey
Validation (SV) campaign before beginning full operations. This program
produced deep spectra of tens of thousands of objects from each of the stellar
(MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy
(ELG), and quasar target classes. These SV spectra were used to optimize
redshift distributions, characterize exposure times, determine calibration
procedures, and assess observational overheads for the five-year program. In
this paper, we present the final target selection algorithms, redshift
distributions, and projected cosmology constraints resulting from those
studies. We also present a `One-Percent survey' conducted at the conclusion of
Survey Validation covering 140 deg using the final target selection
algorithms with exposures of a depth typical of the main survey. The Survey
Validation indicates that DESI will be able to complete the full 14,000 deg
program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG,
and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87
million, respectively. These samples will allow exploration of the Milky Way
halo, clustering on all scales, and BAO measurements with a statistical
precision of 0.28% over the redshift interval , 0.39% over the redshift
interval , and 0.46% over the redshift interval .Comment: 42 pages, 18 figures, accepted by A
- …