62 research outputs found

    The Study of the Heisenberg-Euler Lagrangian and Some of its Applications

    Full text link
    The Heisenberg-Euler Lagrangian is not only a topic of fundamental interest, but also has a rich variety of diverse applications in astrophysics, nonlinear optics and elementary particle physics etc. We discuss the series representation of this Lagrangian and a few of its applications in this study. [In an appendix, we discuss issues related to the renormalization - and the renormalization-group invariance - of the Heisenberg-Euler Lagrangian and its two-loop generalization.]Comment: 12 pages, LaTeX; Proceedings of the MRST-2003 conference; talk given by S. R. Vallur

    Lamm, Valluri, Jentschura and Weniger comment on "A Convergent Series for the QED Effective Action" by Cho and Pak [Phys. Rev. Lett. vol. 86, pp. 1947-1950 (2001)]

    Get PDF
    Complete results were obtained by us in [Can. J. Phys. 71, 389 (1993)] for convergent series representations of both the real and the imaginary part of the QED effective action; these derivations were based on correct intermediate steps. In this comment, we argue that the physical significance of the "logarithmic correction term" found by Cho and Pak in [Phys. Rev. Lett. 86, 1947 (2001)] in comparison to the usual expression for the QED effective action remains to be demonstrated. Further information on related subjects can be found in Appendix A of hep-ph/0308223 and in hep-th/0210240.Comment: 1 page, RevTeX; only "meta-data" update

    QED Effective Action Revisited

    Get PDF
    The derivation of a convergent series representation for the quantum electrodynamic effective action obtained by two of us (S.R.V. and D.R.L.) in [Can. J. Phys. vol. 71, p. 389 (1993)] is reexamined. We present more details of our original derivation. Moreover, we discuss the relation of the electric-magnetic duality to the integral representation for the effective action, and we consider the application of nonlinear convergence acceleration techniques which permit the efficient and reliable numerical evaluation of the quantum correction to the Maxwell Lagrangian.Comment: 20 pages, LaTeX, 1 table; minor additions and adjustments; to appear in Can. J. Phy

    Inelastic Processes in the Collision of Relativistic Highly Charged Ions with Atoms

    Get PDF
    A general expression for the cross sections of inelastic collisions of fast (including relativistic) multicharged ions with atoms which is based on the genelazition of the eikonal approximation is derived. This expression is applicable for wide range of collision energy and has the standard nonrelativistic limit and in the ultrarelativistic limit coincides with the Baltz's exact solution ~\cite{art13} of the Dirac equation. As an application of the obtained result the following processes are calculated: the excitation and ionization cross sections of hydrogenlike atom; the single and double excitation and ionization of heliumlike atom; the multiply ionization of neon and argon atoms; the probability and cross section of K-vacancy production in the relativistic U92+U91+U^{92+} - U^{91+} collision. The simple analytic formulae for the cross sections of inelastic collisions and the recurrence relations between the ionization cross sections of different multiplicities are also obtained. Comparison of our results with the experimental data and the results of other calculations are given.Comment: 25 pages, latex, 7 figures avialable upon request,submitted to PR

    Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg2^2 over five years to constrain the cosmic expansion history through precise measurements of Baryon Acoustic Oscillations (BAO). The scientific program for DESI was evaluated during a five month Survey Validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar (MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the five-year program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a `One-Percent survey' conducted at the conclusion of Survey Validation covering 140 deg2^2 using the final target selection algorithms with exposures of a depth typical of the main survey. The Survey Validation indicates that DESI will be able to complete the full 14,000 deg2^2 program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval z<1.1z<1.1, 0.39% over the redshift interval 1.1<z<1.91.1<z<1.9, and 0.46% over the redshift interval 1.9<z<3.51.9<z<3.5.Comment: 42 pages, 18 figures, accepted by A
    corecore