762 research outputs found

    Magnetic Flux Periodic Response of Nano-perforated Ultrathin Superconducting Films

    Full text link
    We have patterned a hexagonal array of nano-scale holes into a series of ultrathin, superconducting Bi/Sb films with transition temperatures 2.65 K <Tco<<T_{co} < 5 K. These regular perforations give the films a phase-sensitive periodic response to an applied magnetic field. By measuring this response in their resistive transitions, R(T)R(T), we are able to distinguish regimes in which fluctuations of the amplitude, both the amplitude and phase, and the phase of the superconducting order parameter dominate the transport. The portion of R(T)R(T) dominated by amplitude fluctuations is larger in lower TcoT_{co} films and thus, grows with proximity to the superconductor to insulator transition.Comment: Revised title, abstract, text, figure

    Coulomb Zero-Bias Anomaly: A Semiclassical Calculation

    Full text link
    Effective action is proposed for the problem of Coulomb blocking of tunneling. The approach is well suited to deal with the ``strong coupling'' situation near zero bias, where perturbation theory diverges. By a semiclassical treatment, we reduce the physics to that of electrodynamics in imaginary time, and express the anomaly through exact conductivity of the system σ(ω,q)\sigma(\omega, q) and exact interaction. For the diffusive anomaly, we compare the result with the perturbation theory of Altshuler, Aronov, and Lee. For the metal-insulator transition we derive exact relation of the anomaly and critical exponent of conductivity.Comment: 9 pages, RevTeX 3.

    Driven diffusive system with non-local perturbations

    Full text link
    We investigate the impact of non-local perturbations on driven diffusive systems. Two different problems are considered here. In one case, we introduce a non-local particle conservation along the direction of the drive and in another case, we incorporate a long-range temporal correlation in the noise present in the equation of motion. The effect of these perturbations on the anisotropy exponent or on the scaling of the two-point correlation function is studied using renormalization group analysis.Comment: 11 pages, 2 figure

    Energy Gap Induced by Impurity Scattering: New Phase Transition in Anisotropic Superconductors

    Full text link
    It is shown that layered superconductors are subjected to a phase transition at zero temperature provided the order parameter (OP) reverses its sign on the Fermi-surface but its angular average is finite. The transition is regulated by an elastic impurity scattering rate 1/τ1/\tau. The excitation energy spectrum, being gapless at the low level of scattering, develops a gap as soon as the scattering rate exceeds some critical value of 1/τ1/\tau_\star.Comment: Revtex, 11 page

    Sustainable recovery of critical elements from seawater saltworks bitterns by integration of high selective sorbents and reactive precipitation and crystallisation: Developing the probe of concept with on-site produced chemicals and energy

    Get PDF
    The availability of raw mineral resources containing elements included in the Critical Raw Materials (CRMs) list is a growing concern for the European Union. Sea mining has been identified as a promising secondary source. In particular, brines obtained in solar saltworks (bitterns) contain relevant amounts of valuable CRMs such as Mg(II), B(III), other alkaline/alkaline earth metals (Rb(I), Cs(I), Sr(II)) and transition/post-transition elements (Co(II), Ga(III), Ge(IV)). However, the low concentration of some of these elements (µg/L) requires an effort to develop recovery routes that are sustainable and economically feasible where the required chemicals and energy are produced on-site from the saltworks bitterns (i.e. HCl and NaOH). Even the conventional recovery processes such as ion exchange, sorption and precipitation, which have proved to be competitive for metals recovery, are challenged in the case of Trace Elements (TEs). This work studies the recovery of TEs included in the CRMs list from saltworks bitterns after ion exchange processes. First, batch crystallisation and reactive precipitation were tested for some target elements in single-component solutions: Sr(II), Co(II), Ga(III), Ge(IV) and B(III). Then, the experiments were carried out with multi-component synthetic solutions assuming different scenarios of bittern streams coming out a selective extraction stage using sorption and ion exchange processes. The targeted elements were recovered except for Ge(IV), where alternative routes need to be evaluated, as its precipitation involves the use of tannic acid or sulphide solutions that could not be produced from the bitterns. However, a further concentration step would be necessary to achieve element concentrations closer to the mineral phases saturation. Moreover, model simulations were performed using the PHREEQC program, which provided a good prediction of the experimental trends obtained in most cases

    Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    Full text link
    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Breakdown of the surface barrier against magnetic flux penetration at the cavity equator is considered to be the critical event that determines the onset of Q-drop. The worst case of triangular grooves with low field of first flux penetration Hp, as analyzed previously by Buzdin and Daumens, [1998 Physica C 294: 257], was adapted. This approach incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter kappa, so the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hp when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. When in combination, contamination exacerbates the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of kappa. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~30%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.Comment: 15 pages with 7 figure

    The Superconductor-Insulator Transition in a Tunable Dissipative Environment

    Full text link
    We study the influence of a tunable dissipative environment on the dynamics of Josephson junction arrays near the superconductor-insulator transition. The experimental realization of the environment is a two dimensional electron gas coupled capacitively to the array. This setup allows for the well-controlled tuning of the dissipation by changing the resistance of the two dimensional electron gas. The capacitive coupling cuts off the dissipation at low frequencies. We determine the phase diagram and calculate the temperature and dissipation dependence of the array conductivity. We find good agreement with recent experimental results.Comment: 4 pages, 4 .eps figures, revte

    Infrared Studies of the Onset of Conductivity in Ultra-Thin Pb Films

    Full text link
    In this paper we report the first experimental measurement of the infrared conductivity of ultra-thin quenched-condensed Pb films. For dc sheet resistances such that ωτ1\omega \tau \ll 1 the ac conductance increases with frequency but is in disagreement with the predictions of weak localization. We attribute this behavior to the effects of an inhomogeneous granular structure of these films, which is manifested at the very small probing scale of infrared measurements. Our data are consistent with predictions of two-dimensional percolation theory.Comment: Submitted to Physical Review Letter

    Disordered Bosons: Condensate and Excitations

    Full text link
    The disordered Bose Hubbard model is studied numerically within the Bogoliubov approximation. First, the spatially varying condensate wavefunction in the presence of disorder is found by solving a nonlinear Schrodinger equation. Using the Bogoliubov approximation to find the excitations above this condensate, we calculate the condensate fraction, superfluid density, and density of states for a two-dimensional disordered system. These results are compared with experiments done with 4He{}^4{\rm He} adsorbed in porous media.Comment: RevTeX, 26 pages and 10 postscript figures appended (Figure 9 has three separate plots, so 12 postcript files altogether
    corecore