14,533 research outputs found
Runaway massive stars as variable gamma-ray sources
Runaway stars are ejected from their formation sites well within molecular
cores in giant dark clouds. Eventually, these stars can travel through the
molecular clouds, which are highly inhomogeneous. The powerful winds of massive
runaway stars interact with the medium forming bowshocks. Recent observations
and theoretical modelling suggest that these bowshocks emit non-thermal
radiation. As the massive stars move through the inhomogeneous ambient gas the
physical properties of the bowshocks are modified, producing changes in the
non-thermal emission. We aim to compute the non-thermal radiation produced in
the bowshocks of runaway massive stars when travelling through a molecular
cloud. We calculate the non-thermal emission and absorption for two types of
massive runaway stars, an O9I and an O4I, as they move through a density
gradient. We present the spectral energy distributions for the runaway stars
modelled. Additionally, we obtain light curves at different energy ranges. We
find significant variations in the emission over timescales of 1 yr. We
conclude that bowshocks of massive runaway stars, under some assumptions, might
be variable gamma-ray sources, with variability timescales that depend on the
medium density profile. These objects might constitute a population of galactic
gamma-ray sources turning on and off within years.Comment: 10 pages, 13 figures, accepted for publication in Astronomy &
Astrophysic
Hydrodynamic fluctuations in relativistic superfluids
The Hamiltonian formulation of superfluids based on noncanonical Poisson
brackets is studied in detail. The assumption that the momentum density is
proportional to the flow of the conserved energy is shown to lead to the
covariant relativistic theory previously suggested by Khalatnikov, Lebedev and
Carter, and some potentials in this theory are given explicitly. We discuss
hydrodynamic fluctuations in the presence of dissipative effects and we derive
the corresponding set of hydrodynamic correlation functions. Kubo relations for
the transport coefficients are obtained.Comment: 13 pages, no figures, two references adde
Global status of neutrino oscillation parameters after Neutrino-2012
Here we update the global fit of neutrino oscillations in arXiv:1103.0734 and
arXiv:1108.1376 including the recent measurements of reactor antineutrino
disappearance reported by the Double Chooz, Daya Bay and RENO experiments,
together with latest MINOS and T2K appearance and disappearance results, as
presented at the Neutrino-2012 conference. We find that the preferred global
fit value of is quite large: for
normal and inverted neutrino mass ordering, with now excluded
at more than 10. The impact of the new measurements over
the other neutrino oscillation parameters is discussed as well as the role of
the new long-baseline neutrino data and the atmospheric neutrino analysis in
the determination of a non-maximal atmospheric angle .Comment: Note added, matches published version in Physical Review
Neutrino oscillations refitted
Here we update our previous global fit of neutrino oscillations by including
the recent results which have appeared since the Neutrino-2012 conference.
These include the measurements of reactor anti-neutrino disappearance reported
by Daya Bay and RENO, together with latest T2K and MINOS data including both
disappearance and appearance channels. We also include the revised results from
the third solar phase of Super-Kamiokande, SK-III, as well as new solar results
from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred
global determination of the atmospheric angle is consistent with
maximal mixing. We also determine the impact of the new data upon all the other
neutrino oscillation parameters with emphasis on the increasing sensitivity to
the CP phase, thanks to the interplay between accelerator and reactor data. In
the appendix we present the updated results obtained after the inclusion of new
reactor data presented at the Neutrino 2014 conference. We discuss their impact
on the global neutrino analysis.Comment: 13 pages, 5 figures, 2 tables. An appendix providing updated results
after Neutrino-2014 Conference is added. Matches published version in
Physical Review
Radiative zone solar magnetic fields and g-modes
We consider a generalized model of seismic-wave propagation that takes into
account the effect of a central magnetic field in the Sun. We determine the
g-mode spectrum in the perturbative magnetic field limit using a
one-dimensional Magneto-Hydrodynamics (MHD) picture. We show that central
magnetic fields of about 600-800 kG can displace the pure g-mode frequencies by
about 1%, as hinted by the helioseismic interpretation of GOLF observations.Comment: 6 pages, 4 figures; final version to appear in MNRA
Non-Gaussian Geostatistical Modeling using (skew) t Processes
We propose a new model for regression and dependence analysis when addressing
spatial data with possibly heavy tails and an asymmetric marginal distribution.
We first propose a stationary process with marginals obtained through scale
mixing of a Gaussian process with an inverse square root process with Gamma
marginals. We then generalize this construction by considering a skew-Gaussian
process, thus obtaining a process with skew-t marginal distributions. For the
proposed (skew) process we study the second-order and geometrical
properties and in the case, we provide analytic expressions for the
bivariate distribution. In an extensive simulation study, we investigate the
use of the weighted pairwise likelihood as a method of estimation for the
process. Moreover we compare the performance of the optimal linear predictor of
the process versus the optimal Gaussian predictor. Finally, the
effectiveness of our methodology is illustrated by analyzing a georeferenced
dataset on maximum temperatures in Australi
Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw
Within low-scale seesaw mechanisms, such as the inverse and linear seesaw,
one expects (i) potentially large lepton flavor violation (LFV) and (ii)
sizeable non-standard neutrino interactions (NSI). We consider the interplay
between the magnitude of non-unitarity effects in the lepton mixing matrix, and
the constraints that follow from LFV searches in the laboratory. We find that
NSI parameters can be sizeable, up to percent level in some cases, while LFV
rates, such as that for \mu -> e \gamma, lie within current limits, including
the recent one set by the MEG collaboration. As a result the upcoming long
baseline neutrino experiments offer a window of opportunity for complementary
LFV and weak universality tests.Comment: 14 pages, 14 composite figures and 1 table. v2: minor changes,
references added. Accepted for publication in JHE
Indigenous and introduced species of the Bemisia tabaci complex in sweet potato crops from Argentina
La batata (Ipomoea batatas (L.) Lam) es uno de los cultivos más importantes en el mundo. Recientemente se observó una severa sintomatología viral en cultivos de la región pampeana argentina, en la que están identificados begomovirus y crinivirus, ambos transmitidos exclusivamente por mosca blanca. El objetivo de este estudio fue identificar las especies de B. tabaci en cultivos de batata en Colonia Caroya, mediante el análisis de secuencias mitocondriales de la citocromo oxidasa subunidad I (mtCOI). Se identificaron dos haplotipos (especies crípticas) ya descriptos en el mundo: New World2 (especie nativa) y MEAM1 (especie introducida). Los resultados indican la presencia de ambas especies, las cuales son potenciales vectores de begomovirus y crinivirus en batata en Argentina.Sweet potato (Ipomoea batatas (L.) Lam) is one of the most important crops worldwide. Recently, the appearance of severe viral symptoms has been observed in sweet potato crops in the pampas region of Argentina and both begomovirus and crinivirus, exclusively transmitted by whiteflies, have been identified. The aim of this study was to identify B. tabaci species from sweet potato crops in Colonia Caroya by analysing mitochondrial cytochrome c oxidase subunit I (mtCOI) sequences. Two previously described haplotypes were identified: New World2 (indigenous species) and MEAM1 (introduced species). The results indicate the presence of both species, which are potential vectors of begomovirus and crinivirus in Argentina.Fil: Alemandri, V.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; ArgentinaFil: Martino, Julia Andrea. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Di Feo, Liliana del Valle. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Truol, G.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentin
- …