32 research outputs found
Engineering catalytic sites for oxidation and condensation reactions using metal-organic frameworks or graphene-based materials
[ES] La presente tesis doctoral ha mostrado la posibilidad de diseñar sitios activos de MOFs y materiales basados en grafeno para ser utilizados como catalizadores con actividad mejorada para reacciones de oxidación y condensación. Específicamente, el desarrollo de una combinación de metales MIL-101(Cr,Fe) ha dado como resultado un catalizador con actividad catalítica mejorada para la reacción de Prins entre ß-pineno y formaldehído con respecto al MIL-101(Cr) o el inestable MIL-101(Fe) en las condiciones de reacción estudiadas. La presencia de iones Fe3+ en los nodos metálicos del MIL-101(Cr, Fe) aumenta la densidad y la fuerza de los sitios ácidos de Lewis del material, mientras que la presencia de Cr+3 en los nodos metálicos proporciona estabilidad al catalizador. Además, esta Tesis ha demostrado que la presencia de grupos NO2 en el ligando orgánico tereftalato de MIL-101(Cr) aumenta la densidad y la fuerza de los sitios ácidos de Lewis del material. Por lo tanto, MIL-101(Cr)-NO2 exhibe una actividad catalítica superior para la síntesis de bencimidazoles a partir de o-fenilendiaminas y derivados de benzaldehído, así como para la oxidación aeróbica del tiofenol y la desulfuración oxidativa aeróbica de dibenzotiofenos. Esta Tesis también ha demostrado que la selección de un agente reductor apropiado como la hidroquinona para la preparación de rGO a partir de GO aumenta la densidad de los sitios activos para promover las oxidaciones aeróbicas de tiofenol e indano.[CA] La present Tesi doctoral ha mostrat la possibilitat de dissenyar llocs actius de MOFs i materials basats en grafè per ser utilitzats com a catalitzadors amb activitat millorada per a reaccions d'oxidació i condensació. Específicament, el desenvolupament d'una combinació de metalls MIL-101(Cr,Fe) ha donat com a resultat un catalitzador amb activitat catalítica millorada per a la reacció de Prins entre ß-pinè i formaldehíd pel que fa a MIL-101(Cr) o l'inestable MIL-101(Fe) en les condicions de reacció estudiades. La presència de ions Fe3+ en els nodes metàl·lics de MIL-101(Cr,Fe) augmenta la densitat i la força dels llocs àcids de Lewis del material, mentre que la presència de Cr3+ en els nodes metàl·lics proporciona estabilitat al catalitzador. A més a més, aquesta Tesi ha demostrat que la presència de grups NO2 al lligam orgànic tereftalat de MIL-101(Cr) augmenta la densitat i la força dels llocs àcids de Lewis del material. Per tant, MIL 101(Cr)-NO2 exhibeix una activitat catalítica superior per a la síntesis de bencimidazols a partir de o-fenilendiamines i derivats de benzaldehid, així com per a l'oxidació aeròbica del tiofenol i la desulfuració oxidativa aeròbica de dibenzotiofens. Aquesta Tesi també ha demostrat que la sel·lecció d'un agent reductor apropiat com la hidroquinona per a la preparació de rGO a partir de GO augmenta la densitat dels llocs actius per a promoure les oxidacions aeròbiques de tiofenol i indano.[EN] The present doctoral thesis has shown the possibility of engineering the active sites of MOFs and graphene-based materials as catalysts with enhanced activity for oxidation and condensation reactions. Specifically, the development of a mixed-metal MIL-101(Cr, Fe) has resulted in a catalyst with enhanced catalytic activity for the Prins reaction between ß-pinene and formaldehyde with respect to the use of MIL-101(Cr) or the unstable MIL 101(Fe) under the studied reaction conditions. The presence of Fe3+ ions in the metal nodes of the MIL-101(Cr, Fe) increases the density and strength of the Lewis acid sites of the material and the presence of Cr3+ in the metal nodes provides catalyst stability. Furthermore, this thesis has demonstrated that the presence of NO2 groups in the terephthalate organic ligand of MIL 101(Cr) increases the density and strength of Lewis acid sites of the material. Thus, MIL-101(Cr)-NO2 exhibits a superior catalytic activity for the synthesis of benzimidazoles from o-phenylenediamines and benzaldehyde derivatives, as well as for the aerobic oxidation of thiophenol and the aerobic oxidative desulfuration of dibenzothiophenes. This thesis has also shown that the selection of an appropriate reducing agent (such as hydroquinone) for the preparation of rGO from GO increases the density of active sites and promotes the aerobic oxidations of thiophenol and indane.Financial support by the Spanish Ministry of Economy and
Competitiveness (Severo Ochoa, CTQ2018-890237-CO2-R1 and Maria de
Maeztu, CEX2019-000919-M), is gratefully acknowledged. Generalidad
Valenciana is also thanked for funding (Prometeo 2017/083). S.N. thanks
financial support by the Ministerio de Ciencia, Innovación y Universidades
(RTI 2018-099482-A-100 project), Fundación Ramón Areces (XVIII Concurso
Nacional para la Adjudicación de Ayudas a la Investigación en Ciencias de la
Vida y de la Materia, 2016), and Generalitat Valenciana grupos de
investigación consolidables 2019 (ref: AICO/2019/214) Project. E. G. thanks
the ANR-11-LABEX-0039 (LabEx CHARM3AT) for financial support. M.G.-M
thanks support from “la Caixa” Fundation (LCF/BQ/PI19/11690022) and
Generalitat Valenciana (SEJI/2020/036). Financial support by the Spanish Ministry of Science and Innovation (Severo
Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo
2017/083) is gratefully acknowledged.Vallés García, C. (2021). Engineering catalytic sites for oxidation and condensation reactions using metal-organic frameworks or graphene-based materials [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/175802TESI
MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes
[EN] A series of MIL-101(Cr)-X functionalized with electron withdrawing (NO2, SO3H or Cl) or electron donor (NH2 or CH3) groups has been tested for the solvent-free oxidative coupling of thiophenol to disulfides. No byproducts were observed. A relationship between the catalytic activity of these MOFs with the substituent meta Hammet constant on the terephthalate ligand and with their redox potential was found, MIL-101(Cr)-NO2 being the most active catalyst. NO2-substituted MIL-101 is also more efficient than the parent MIL-101(Cr) to promote the aerobic desulfurization of dibenzothiophenes in n-dodecane or commercial Diesel as solvent. No byproduct formation was observed. Mechanistic studies reveal that MIL-101(Cr)-NO2 is acting as heterogeneous catalyst in thiophenol oxidation and as radical initiator for the aerobic desulfurization. For both reactions, the catalyst can be reused without deactivation, maintaining its crystallinity and with negligible metal leaching.Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovacion y Universidades CTQ-2018 RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (AICO2019/214 project).Vallés-García, C.; Santiago-Portillo, A.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2020). MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes. Applied Catalysis A General. 590:1-8. https://doi.org/10.1016/j.apcata.2019.117340S18590Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081aStock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304eSilva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307eLi, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190sSumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., … Long, J. R. (2011). Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 112(2), 724-781. doi:10.1021/cr2003272Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033bDhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Cui, Y., Yue, Y., Qian, G., & Chen, B. (2011). Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 112(2), 1126-1162. doi:10.1021/cr200101dKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324tHorcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., … Serre, C. (2011). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232-1268. doi:10.1021/cr200256vWu, Y., Song, X., Li, S., Zhang, J., Yang, X., Shen, P., … Xiao, G. (2018). 3D-monoclinic M–BTC MOF (M = Mn, Co, Ni) as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Journal of Industrial and Engineering Chemistry, 58, 296-303. doi:10.1016/j.jiec.2017.09.040Wu, Y., Song, X., Xu, S., Zhang, J., Zhu, Y., Gao, L., & Xiao, G. (2019). 2-Methylimidazole Modified Co-BTC MOF as an Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Catalysis Letters, 149(9), 2575-2585. doi:10.1007/s10562-019-02874-9Wu, Y., Song, X., Zhang, J., Xu, S., Gao, L., Zhang, J., & Xiao, G. (2019). Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies. Chemical Engineering Science, 201, 288-297. doi:10.1016/j.ces.2019.02.032Wu, Y., Song, X., Zhang, J., Xu, S., Xu, N., Yang, H., … Xiao, G. (2018). Zn2(C9H3O6)(C4H5N2)(C4H6N2)3 MOF as a highly efficient catalyst for chemical fixation of CO2 into cyclic carbonates and kinetic studies. Chemical Engineering Research and Design, 140, 273-282. doi:10.1016/j.cherd.2018.10.034Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395kDhakshinamoorthy, A., Opanasenko, M., Čejka, J., & Garcia, H. (2013). Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science & Technology, 3(10), 2509. doi:10.1039/c3cy00350gDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kLee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080fMa, L., Abney, C., & Lin, W. (2009). Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews, 38(5), 1248. doi:10.1039/b807083kValvekens, P., Vermoortele, F., & De Vos, D. (2013). Metal–organic frameworks as catalysts: the role of metal active sites. Catalysis Science & Technology, 3(6), 1435. doi:10.1039/c3cy20813cYoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147Kholdeeva, O. A. (2016). Liquid-phase selective oxidation catalysis with metal-organic frameworks. Catalysis Today, 278, 22-29. doi:10.1016/j.cattod.2016.06.010Chen, Y. F., Babarao, R., Sandler, S. I., & Jiang, J. W. (2010). Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation. Langmuir, 26(11), 8743-8750. doi:10.1021/la904502hJhung, S. H., Lee, J.-H., Yoon, J. W., Serre, C., Férey, G., & Chang, J.-S. (2007). Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Advanced Materials, 19(1), 121-124. doi:10.1002/adma.200601604Hu, Z., & Zhao, D. (2017). Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 19(29), 4066-4081. doi:10.1039/c6ce02660eMaksimchuk, N. V., Zalomaeva, O. V., Skobelev, I. Y., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2012). Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2143), 2017-2034. doi:10.1098/rspa.2012.0072Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Gómez-Paricio, A., Santiago-Portillo, A., Navalón, S., Concepción, P., Alvaro, M., & Garcia, H. (2016). MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 18(2), 508-515. doi:10.1039/c5gc00862jDhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345bVermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 86(1-4), 211-263. doi:10.1016/s0920-5861(03)00412-7Chandra Srivastava, V. (2012). An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv., 2(3), 759-783. doi:10.1039/c1ra00309
Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles
[EN] In the present work, nitro functionalized chromium terephthalate [MIL-101(Cr)-NO2] metal-organic framework is prepared and characterized by powder X-ray diffraction (XRD), elemental analysis, infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Brun auer-Emmett-Teller (BET) surface area. The inherent Lewis acidity of MIL-101(Cr)-NO2 is confirmed by FT-IR spectroscopy using CD3CN as a probe molecule. The performance of MIL-101(Cr)-NO2 as bifunctional catalyst (acid and redox) promoting the synthesis of wide range of benzimidazoles has been examined by catalyzed condensation on acid sites and subsequent oxidative dehydrogenation. The catalytic activity of MIL-101(Cr)-NO2 is found to be superior than analogues catalysts like MIL-101(Cr)-S0(3)H, MIL-101(Cr)-NH2, U10-66(Zr), Ui0-66(Zr)-NO2, MIL-100(Fe) and Cu-3(BTC)(2) (BTC: 1,35-benzenetricarboxylate) under identical reaction conditions, The structural stability of MIL-101(Cr)-NO2 is supported by leaching analysis and reusability tests. MIL-101(Cr)-NO2 solid is used five times without decay in its activity. Comparison of the fresh and five times used MIL-101(Cr)-NO2 solids by powder XRD, SEM and elemental analysis indicate identical crystallinity, morphology and the absence of chromium leaching, respectively. (C) 2019 Elsevier Inc. All rights reserved.AD thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudication de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovation y Universidades RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (AICO/2019/214) project.Vallés-García, C.; Cabrero-Antonino, M.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Dhakshinamoorthy, A.; García Gómez, H. (2020). Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. Journal of Colloid and Interface Science. 560:885-893. https://doi.org/10.1016/j.jcis.2019.10.093S885893560Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275Bromberg, L., & Hatton, T. A. (2011). Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites. ACS Applied Materials & Interfaces, 3(12), 4756-4764. doi:10.1021/am201246dCirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878Kim, J., Kim, S.-N., Jang, H.-G., Seo, G., & Ahn, W.-S. (2013). CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General, 453, 175-180. doi:10.1016/j.apcata.2012.12.018Li, B., Leng, K., Zhang, Y., Dynes, J. J., Wang, J., Hu, Y., … Ma, S. (2015). Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 137(12), 4243-4248. doi:10.1021/jacs.5b01352Mitchell, L., Gonzalez-Santiago, B., Mowat, J. P. S., Gunn, M. E., Williamson, P., Acerbi, N., … Wright, P. A. (2013). Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and CN bond-forming reactions. Catal. Sci. Technol., 3(3), 606-617. doi:10.1039/c2cy20577gBhattacharjee, S., Chen, C., & Ahn, W.-S. (2014). Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv., 4(94), 52500-52525. doi:10.1039/c4ra11259hNiknam, E., Panahi, F., Daneshgar, F., Bahrami, F., & Khalafi-Nezhad, A. (2018). Metal–Organic Framework MIL-101(Cr) as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzoazoles. ACS Omega, 3(12), 17135-17144. doi:10.1021/acsomega.8b02309Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). Direct Air Capture of CO2 Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry & Engineering, 4(10), 5761-5768. doi:10.1021/acssuschemeng.6b01692Gao, L., Li, C.-Y. V., Yung, H., & Chan, K.-Y. (2013). A functionalized MIL-101(Cr) metal–organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chemical Communications, 49(90), 10629. doi:10.1039/c3cc45719bHartmann, M., & Fischer, M. (2012). Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 164, 38-43. doi:10.1016/j.micromeso.2012.06.044Ma, W., Xu, L., Li, Z., Sun, Y., Bai, Y., & Liu, H. (2016). Post-synthetic modification of an amino-functionalized metal–organic framework for highly efficient enrichment of N-linked glycopeptides. Nanoscale, 8(21), 10908-10912. doi:10.1039/c6nr02490dToyao, T., Fujiwaki, M., Horiuchi, Y., & Matsuoka, M. (2013). Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Advances, 3(44), 21582. doi:10.1039/c3ra44701dYu, H., Xie, J., Zhong, Y., Zhang, F., & Zhu, W. (2012). One-pot synthesis of nitroalkenes via the Henry reaction over amino-functionalized MIL-101 catalysts. Catalysis Communications, 29, 101-104. doi:10.1016/j.catcom.2012.09.032Ma, L., Xu, L., Jiang, H., & Yuan, X. (2019). Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid. RSC Advances, 9(10), 5692-5700. doi:10.1039/c8ra10366fSaikia, M., & Saikia, L. (2016). Sulfonic acid-functionalized MIL-101(Cr) as a highly efficient heterogeneous catalyst for one-pot synthesis of 2-amino-4H-chromenes in aqueous medium. RSC Advances, 6(19), 15846-15853. doi:10.1039/c5ra28135kZhou, Y.-X., Chen, Y.-Z., Hu, Y., Huang, G., Yu, S.-H., & Jiang, H.-L. (2014). MIL-101-SO3H: A Highly Efficient Brønsted Acid Catalyst for Heterogeneous Alcoholysis of Epoxides under Ambient Conditions. Chemistry - A European Journal, 20(46), 14976-14980. doi:10.1002/chem.201404104Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577cHerbst, A., Khutia, A., & Janiak, C. (2014). Brønsted Instead of Lewis Acidity in Functionalized MIL-101Cr MOFs for Efficient Heterogeneous (nano-MOF) Catalysis in the Condensation Reaction of Aldehydes with Alcohols. Inorganic Chemistry, 53(14), 7319-7333. doi:10.1021/ic5006456Kumar, A., Maurya, R. A., & Saxena, D. (2009). Diversity-oriented synthesis of benzimidazole, benzoxazole, benzothiazole and quinazolin-4(3H)-one libraries via potassium persulfate–CuSO4-mediated oxidative coupling reactions of aldehydes in aqueous micelles. Molecular Diversity, 14(2), 331-341. doi:10.1007/s11030-009-9170-8Reddy, L. A., Malakondaiah, G. C., Reddy, A. S., Bhaskar, B. V., Himabindu, V., Bhattacharya, A., & Bandichhor, R. (2009). Scalable Process for the Premix of Esomeprazole. Organic Process Research & Development, 13(6), 1122-1124. doi:10.1021/op9001406Zhang, Z.-H., Li, T.-S., & Li, J.-J. (2006). A Highly Effective Sulfamic Acid/Methanol Catalytic System for the Synthesis of Benzimidazole Derivatives at Room Temperature. Monatshefte für Chemie - Chemical Monthly, 138(1), 89-94. doi:10.1007/s00706-006-0566-1Singh, M. P., Sasmal, S., Lu, W., & Chatterjee, M. N. (2000). Synthetic Utility of Catalytic Fe(III)/Fe(II) Redox Cycling Towards Fused Heterocycles: A Facile Access to Substituted Benzimidazole, Bisbenzimidazole and Imidazopyridine Derivatives. Synthesis, 2000(10), 1380-1390. doi:10.1055/s-2000-7111Trivedi, R., De, S. K., & Gibbs, R. A. (2006). A convenient one-pot synthesis of 2-substituted benzimidazoles. Journal of Molecular Catalysis A: Chemical, 245(1-2), 8-11. doi:10.1016/j.molcata.2005.09.025Ohsawa, A., Nagata, K., Itoh, T., & Ishikawa, H. (2003). Synthesis of 2-Substituted Benzimidazoles by Reaction of o-Phenylenediamine with Aldehydes in the Presence of Sc(OTf)3. HETEROCYCLES, 61(1), 93. doi:10.3987/com-03-s47Wang, Y., Ma, H., Li, J., & Wang, J. (2007). Selective Synthesis of 2-Aryl-1-arylmethyl-1H-1,3-benzimidazoles Promoted by Ionic Liquid. HETEROCYCLES, 71(1), 135. doi:10.3987/com-06-10920Gogoi, P., & Konwar, D. (2006). An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon–nitrogen bonds in water. Tetrahedron Letters, 47(1), 79-82. doi:10.1016/j.tetlet.2005.10.134Kawashita, Y., Nakamichi, N., Kawabata, H., & Hayashi, M. (2003). Direct and Practical Synthesis of 2-Arylbenzoxazoles Promoted by Activated Carbon. Organic Letters, 5(20), 3713-3715. doi:10.1021/ol035393wDhakshinamoorthy, A., Kanagaraj, K., & Pitchumani, K. (2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 52(1), 69-73. doi:10.1016/j.tetlet.2010.10.146Madasamy, K., Kumaraguru, S., Sankar, V., Mannathan, S., & Kathiresan, M. (2019). A Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions. New Journal of Chemistry, 43(9), 3793-3800. doi:10.1039/c8nj05953eKaur, H., Venkateswarulu, M., Kumar, S., Krishnan, V., & Koner, R. R. (2018). A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Transactions, 47(5), 1488-1497. doi:10.1039/c7dt04057aHomaee, M., Hamadi, H., Nobakht, V., Javaherian, M., & Salahshournia, B. (2019). Ultrasound-assisted synthesis of UiO-66-NHSO3H via post-synthetic modification as a heterogeneous Brønsted acid catalyst. Polyhedron, 165, 152-161. doi:10.1016/j.poly.2019.03.009Kardanpour, R., Tangestaninejad, S., Mirkhani, V., Moghadam, M., Mohammadpoor-Baltork, I., & Zadehahmadi, F. (2016). Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles. Journal of Solid State Chemistry, 235, 145-153. doi:10.1016/j.jssc.2015.11.019Canivet, J., Vandichel, M., & Farrusseng, D. (2016). Origin of highly active metal–organic framework catalysts: defects? Defects! Dalton Transactions, 45(10), 4090-4099. doi:10.1039/c5dt03522hDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254gYuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H. (2018). Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148Hu, M.-L., Safarifard, V., Doustkhah, E., Rostamnia, S., Morsali, A., Nouruzi, N., … Akhbari, K. (2018). Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous and Mesoporous Materials, 256, 111-127. doi:10.1016/j.micromeso.2017.07.057Xu, C., Fang, R., Luque, R., Chen, L., & Li, Y. (2019). Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 388, 268-292. doi:10.1016/j.ccr.2019.03.005Azarifar, D., Ghorbani-Vaghei, R., Daliran, S., & Oveisi, A. R. (2017). A Multifunctional Zirconium-Based Metal-Organic Framework for the One-Pot Tandem Photooxidative Passerini Three-Component Reaction of Alcohols. ChemCatChem, 9(11), 1992-2000. doi:10.1002/cctc.201700169Ghaleno, M. R., Ghaffari-Moghaddam, M., Khajeh, M., Reza Oveisi, A., & Bohlooli, M. (2019). Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. Journal of Colloid and Interface Science, 535, 214-226. doi:10.1016/j.jcis.2018.09.099Kirchon, A., Feng, L., Drake, H. F., Joseph, E. A., & Zhou, H.-C. (2018). From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 47(23), 8611-8638. doi:10.1039/c8cs00688aDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128tDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Santiago-Portillo, A., Navalón, S., Álvaro, M., & García, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 365, 450-463. doi:10.1016/j.jcat.2018.07.032Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236Lammert, M., Bernt, S., Vermoortele, F., De Vos, D. E., & Stock, N. (2013). Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 52(15), 8521-8528. doi:10.1021/ic4005328Bernt, S., Guillerm, V., Serre, C., & Stock, N. (2011). Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical Communications, 47(10), 2838. doi:10.1039/c0cc04526hLi, B., Zhang, Y., Ma, D., Li, L., Li, G., Li, G., … Feng, S. (2012). A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 48(49), 6151. doi:10.1039/c2cc32384bKandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601vBansal, Y., & Silakari, O. (2012). The therapeutic journey of benzimidazoles: A review. Bioorganic & Medicinal Chemistry, 20(21), 6208-6236. doi:10.1016/j.bmc.2012.09.013Kumar, D., Kommi, D. N., Chebolu, R., Garg, S. K., Kumar, R., & Chakraborti, A. K. (2013). Selectivity control during the solid supported protic acids catalysed synthesis of 1,2-disubstituted benzimidazoles and mechanistic insight to rationalize selectivity. RSC Adv., 3(1), 91-98. doi:10.1039/c2ra21994hWang, R., Lu, X., Yu, X., Shi, L., & Sun, Y. (2007). Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. Journal of Molecular Catalysis A: Chemical, 266(1-2), 198-201. doi:10.1016/j.molcata.2006.04.071Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2015). Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 145(8), 1600-1605. doi:10.1007/s10562-015-1497-4Chen, J., Li, K., Chen, L., Liu, R., Huang, X., & Ye, D. (2014). Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem., 16(5), 2490-2499. doi:10.1039/c3gc42414fHerbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782gInamdar, S. M., More, V. K., & Mandal, S. K. (2013). CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles. Tetrahedron Letters, 54(6), 579-583. doi:10.1016/j.tetlet.2012.11.091Soleimani, E., Khodaei, M. M., Yazdani, H., Saei, P., & Zavar Reza, J. (2015). Synthesis of 2-substituted benzimidazoles and benzothiazoles using Ag2CO3/Celite as an efficient solid catalyst. Journal of the Iranian Chemical Society, 12(7), 1281-1285. doi:10.1007/s13738-015-0592-1Bardajee, G. R., Mohammadi, M., Yari, H., & Ghaedi, A. (2016). Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(III)–Schiff base/SBA-15 as a nanocatalyst. Chinese Chemical Letters, 27(2), 265-270. doi:10.1016/j.cclet.2015.10.011Sharghi, H., Asemani, O., & Tabaei, S. M. H. (2008). Simple and mild procedures for synthesis of benzimidazole derivatives using heterogeneous catalyst systems. Journal of Heterocyclic Chemistry, 45(5), 1293-1298. doi:10.1002/jhet.5570450506Adharvana Chari, M., Shobha, D., & Sasaki, T. (2011). Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts. Tetrahedron Letters, 52(43), 5575-5580. doi:10.1016/j.tetlet.2011.08.047Teimouri, A., Chermahini, A. N., Salavati, H., & Ghorbanian, L. (2013). An efficient and one-pot synthesis of benzimidazoles, benzoxazoles, benzothiazoles and quinoxalines catalyzed via nano-solid acid catalysts. Journal of Molecular Catalysis A: Chemical, 373, 38-45. doi:10.1016/j.molcata.2013.02.030Azizian, J., Torabi, P., & Noei, J. (2016). Synthesis of benzimidazoles and benzoxazoles using TiCl3OTf in ethanol at room temperature. Tetrahedron Letters, 57(2), 185-188. doi:10.1016/j.tetlet.2015.11.092Digwal, C. S., Yadav, U., Sakla, A. P., Sri Ramya, P. V., Aaghaz, S., & Kamal, A. (2016). VOSO 4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters, 57(36), 4012-4016. doi:10.1016/j.tetlet.2016.06.074Vimont, A., Thibault-Starzyk, F., & Daturi, M. (2010). Analysing and understanding the active site by IR spectroscopy. Chemical Society Reviews, 39(12), 4928. doi:10.1039/b919543mLeclerc, H., Vimont, A., Lavalley, J.-C., Daturi, M., Wiersum, A. D., Llwellyn, P. L., … Serre, C. (2011). Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 13(24), 11748. doi:10.1039/c1cp20502aVimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surblé, S., Serre, C., … Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218-3227. doi:10.1021/ja056906sVolkringer, C., Leclerc, H., Lavalley, J.-C., Loiseau, T., Férey, G., Daturi, M., & Vimont, A. (2012). Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al). The Journal of Physical Chemistry C, 116(9), 5710-5719. doi:10.1021/jp210671
Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting
This is the peer reviewed version of the following article: M. Cabrero-Antonino, J. Albero, C. García-Vallés, M. Álvaro, S. Navalón, H. García, Chem. Eur. J. 2020, 26, 15682, which has been published in final form at https://doi.org/10.1002/chem.202003763. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Defect engineering in metal-organic frameworks is commonly performed by using thermal or chemical treatments. Herein we report that oxygen plasma treatment generates structural defects on MIL-125(Ti)-NH2, leading to an increase in its photocatalytic activity. Characterization data indicate that plasma-treated materials retain most of their initial crystallinity, while exhibiting somewhat lower surface area and pore volume. XPS and FT-IR spectroscopy reveal that oxygen plasma induces MIL-125(Ti)-NH2 partial terephthalate decarboxylation and an increase in the Ti-OH population. Thermogravimetric analyses confirm the generation of structural defects by oxygen plasma and allowed an estimation of the resulting experimental formula of the treated MIL-125(Ti)-NH2 solids. SEM analyses show that oxygen plasma treatment of MIL-125(Ti)-NH2 gradually decreases its particle size. Importantly, diffuse reflectance UV/Vis spectroscopy and valence band measurements demonstrate that oxygen plasma treatment alters the MIL-125(Ti)-NH2 band gap and, more significantly, the alignment of highest occupied and lowest unoccupied crystal orbitals. An optimal oxygen plasma treatment to achieve the highest efficiency in water splitting with or without methanol as sacrificial electron donor under UV/Vis or simulated sunlight was determined. The optimized plasma-treated MIL-125(Ti)-NH2 photocatalyst acts as a truly heterogeneous photocatalyst and retains most of its initial photoactivity and crystallinity upon reuse.S.N. thanks the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), the Ministerio de Ciencia, Innovacion y Universidades RTI 2018-099482-A-I00 project, the Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: AICO/2019/214) project, and the AVI project (INNEST/2020/111) for financial support. Financial support by the European Union (LoterCO2M), Spanish Ministry of Science, Innovation and Universities (Severo Ochoa and RTI2018-098237-B-C21), and Generalitat Valenciana (Prometeo 2017-083) is also gratefully acknowledged.Cabrero-Antonino, M.; Albero-Sancho, J.; García-Vallés, C.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2020). Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting. Chemistry - A European Journal. 26(67):15682-15689. https://doi.org/10.1002/chem.202003763S15682156892667Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metall‐organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 128(18), 5504-5535. doi:10.1002/ange.201505581Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256hZhang, T., & Lin, W. (2014). Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43(16), 5982-5993. doi:10.1039/c4cs00103fWang, J.-L., Wang, C., & Lin, W. (2012). Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis, 2(12), 2630-2640. doi:10.1021/cs3005874Wen, M., Mori, K., Kuwahara, Y., An, T., & Yamashita, H. (2018). Design of Single-Site Photocatalysts by Using Metal-Organic Frameworks as a Matrix. Chemistry - An Asian Journal, 13(14), 1767-1779. doi:10.1002/asia.201800444Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829aLi, D., Kassymova, M., Cai, X., Zang, S.-Q., & Jiang, H.-L. (2020). Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 412, 213262. doi:10.1016/j.ccr.2020.213262Zhang, T., Jin, Y., Shi, Y., Li, M., Li, J., & Duan, C. (2019). Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 380, 201-229. doi:10.1016/j.ccr.2018.10.001Luo, H., Zeng, Z., Zeng, G., Zhang, C., Xiao, R., Huang, D., … Tian, S. (2020). Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chemical Engineering Journal, 383, 123196. doi:10.1016/j.cej.2019.123196Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919-9986. doi:10.1021/cr5001892Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. doi:10.1016/s1389-5567(00)00002-2FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001Zhu, J., Li, P.-Z., Guo, W., Zhao, Y., & Zou, R. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 359, 80-101. doi:10.1016/j.ccr.2017.12.013Chen, X., Peng, X., Jiang, L., Yuan, X., Yu, H., Wang, H., … Xia, Q. (2020). Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications. Chemical Engineering Journal, 395, 125080. doi:10.1016/j.cej.2020.125080Remiro-Buenamañana, S., Cabrero-Antonino, M., Martínez-Guanter, M., Álvaro, M., Navalón, S., & García, H. (2019). Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Applied Catalysis B: Environmental, 254, 677-684. doi:10.1016/j.apcatb.2019.05.027An, Y., Xu, B., Liu, Y., Wang, Z., Wang, P., Dai, Y., … Huang, B. (2017). Photocatalytic Overall Water Splitting over MIL-125(Ti) upon CoPi and Pt Co-catalyst Deposition. ChemistryOpen, 6(6), 701-705. doi:10.1002/open.201700100Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350uHisatomi, T., & Domen, K. (2019). Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2(5), 387-399. doi:10.1038/s41929-019-0242-6Nasalevich, M. A., Hendon, C. H., Santaclara, J. G., Svane, K., van der Linden, B., Veber, S. L., … Gascon, J. (2016). Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 6(1). doi:10.1038/srep23676Ma, X., Wang, L., Zhang, Q., & Jiang, H. (2019). Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie International Edition, 58(35), 12175-12179. doi:10.1002/anie.201907074Ma, X., Wang, L., Zhang, Q., & Jiang, H. (2019). Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie, 131(35), 12303-12307. doi:10.1002/ange.201907074De Vos, A., Hendrickx, K., Van Der Voort, P., Van Speybroeck, V., & Lejaeghere, K. (2017). Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 29(7), 3006-3019. doi:10.1021/acs.chemmater.6b05444Taddei, M., Schukraft, G. M., Warwick, M. E. A., Tiana, D., McPherson, M. J., Jones, D. R., & Petit, C. (2019). Band gap modulation in zirconium-based metal–organic frameworks by defect engineering. Journal of Materials Chemistry A, 7(41), 23781-23786. doi:10.1039/c9ta05216jSvane, K. L., Bristow, J. K., Gale, J. D., & Walsh, A. (2018). Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure. Journal of Materials Chemistry A, 6(18), 8507-8513. doi:10.1039/c7ta11155jHendrickx, K., Vanpoucke, D. E. P., Leus, K., Lejaeghere, K., Van Yperen-De Deyne, A., Van Speybroeck, V., … Hemelsoet, K. (2015). Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. Inorganic Chemistry, 54(22), 10701-10710. doi:10.1021/acs.inorgchem.5b01593Wang, Z., Zhang, Y., Neyts, E. C., Cao, X., Zhang, X., Jang, B. W.-L., & Liu, C. (2018). Catalyst Preparation with Plasmas: How Does It Work? ACS Catalysis, 8(3), 2093-2110. doi:10.1021/acscatal.7b03723Jiang, Z., Ge, L., Zhuang, L., Li, M., Wang, Z., & Zhu, Z. (2019). Fine-Tuning the Coordinatively Unsaturated Metal Sites of Metal–Organic Frameworks by Plasma Engraving for Enhanced Electrocatalytic Activity. ACS Applied Materials & Interfaces, 11(47), 44300-44307. doi:10.1021/acsami.9b15794Xiang, W., Ren, J., Chen, S., Shen, C., Chen, Y., Zhang, M., & Liu, C. (2020). The metal–organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Applied Energy, 277, 115560. doi:10.1016/j.apenergy.2020.115560Primo, A., Franconetti, A., Magureanu, M., Mandache, N. B., Bucur, C., Rizescu, C., … Garcia, H. (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 20(11), 2611-2623. doi:10.1039/c7gc03397dGuo, Y., Gao, X., Zhang, C., Wu, Y., Chang, X., Wang, T., … Li, X. (2019). Plasma modification of a Ni based metal–organic framework for efficient hydrogen evolution. Journal of Materials Chemistry A, 7(14), 8129-8135. doi:10.1039/c9ta00696fDan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726mPeng, Y., Rendón-Patiño, A., Franconetti, A., Albero, J., Primo, A., & García, H. (2020). Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials, 3(7), 6623-6632. doi:10.1021/acsaem.0c00789Melillo, A., Cabrero-Antonino, M., Navalón, S., Álvaro, M., Ferrer, B., & García, H. (2020). Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B: Environmental, 278, 119345. doi:10.1016/j.apcatb.2020.119345Ebbesen, T. W., & Ferraudi, G. (1983). Photochemistry of methyl viologen in aqueous and methanolic solutions. The Journal of Physical Chemistry, 87(19), 3717-3721. doi:10.1021/j100242a028García, H., & Navalón, S. (Eds.). (2018). Metal-Organic Frameworks. doi:10.1002/9783527809097Babaryk, A. A., Contreras Almengor, O. R., Cabrero-Antonino, M., Navalón, S., García, H., & Horcajada, P. (2020). A Semiconducting Bi2O2(C4O4) Coordination Polymer Showing a Photoelectric Response. Inorganic Chemistry, 59(6), 3406-3416. doi:10.1021/acs.inorgchem.9b0329
Bifunctional metal-organic frameworks for the hydrogenation of nitrophenol using methanol as the hydrogen source
[EN] This work reports the reduction of 4-nitrophenol to 4-aminophenol using UiO-66(Zr) as a bifunctional photocatalyst and hydrogenation catalyst using methanol as the hydrogen source. In particular, a series of UiO-66(Zr)-X (X: NH2, NO2 and H) and MIL-125(Ti)-NH2 catalysts have been screened as bifunctional catalysts for this process. UiO-66(Zr)-NH2 was found to be the most active material to promote light-assisted nitro hydrogenation under both UV-Vis and simulated sunlight irradiation. The tandem reaction occurs via hydrogen generation from a water/methanol mixture in the first step and, then, reduction of 4-nitrophenol to 4-aminophenol. UiO-66(Zr)-NH2 acts as a truly heterogeneous catalyst and can be reused several times without significant loss of activity, maintaining its crystallinity. This work shows the possibility of using MOFs as solar-driven bifunctional catalysts to promote the hydrogenation of organic compounds using methanol as the hydrogen source.S. N. acknowledges the financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovacion y Universidades RTI 2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: AICO/2019/214) project. Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and RTI2018-098237-B-C21) and Generalitat Valenciana (Prometeo 2017-083) is also gratefully acknowledged.Melillo, A.; García-Vallés, C.; Ferrer Ribera, RB.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2021). Bifunctional metal-organic frameworks for the hydrogenation of nitrophenol using methanol as the hydrogen source. Organic & Biomolecular Chemistry. 19(4):794-800. https://doi.org/10.1039/d0ob01686aS79480019
Templateless Synthesis of Ultra-Microporous 3D Graphitic Carbon from Cyclodextrins and Their Use as Selective Catalyst for Oxygen Activation
[EN] Pyrolysis of alpha-, beta-, and gamma-cyclodextrins at 900 degrees C gives rise to the formation of crystalline graphitic porous nanoparticles (G(CD)), where the dimensions of the pores are uniform in the range from 0.63 to 0.97 nm, from G(alpha-CD) to G(gamma-CD), as determined by transmission electron microscopy. It is found that, while for G(beta-CD) and G(gamma-CD), the surface area measured by N-2 adsorption is about 330-550 m(2) g(-1), respectively, no area can be measured for G(alpha-CD) with N-2 or Ar due to its small pore dimensions. However, CO2 adsorption reveals for G(alpha-CD) the presence of ultra-microporosity and a surface area of 727 m(2) g(-1). G(CD) exhibits activity as metal-free catalysts for the aerobic oxidation of alcohols and the activity increases as the pore dimension decreases. Density functional theory calculations indicate that this high catalytic activity for O-2 activation derives from confinement effects that favor charge transfer from the graphitic walls to O-2. Studies on the formation mechanism shows that the key step leading to the formation of the channels is the melting of cyclodextrin precursors that makes possible the assembly of these capsules before their transformation into microporous graphitic particles.Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and Grant No. RTI2018-890237-CO2-1) and Generalitat Valenciana (Prometeo Grant No. 2017-083) is gratefully acknowledged. A.R.P. thanks the Spanish Ministry of Education for a Ramon y Cajal research associate contract. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovacion y Universidades Grant No. RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: Grant No. AICO/2019/214) project.Rendon-Patiño, A.; Santiago-Portillo, A.; Vallés-García, C.; Palomino Roca, M.; Navalón Oltra, S.; Franconetti, A.; Primo Arnau, AM.... (2020). Templateless Synthesis of Ultra-Microporous 3D Graphitic Carbon from Cyclodextrins and Their Use as Selective Catalyst for Oxygen Activation. Small Methods. 4(3):1-9. https://doi.org/10.1002/smtd.201900721S194
Arquitectura de una red de sensores inalámbrica para la monitorización de la laguna costera del Mar Menor
En el presente trabajo se propone una red de sensores inalámbrica cuyo objetivo es la
monitorización de la laguna costera del Mar Menor situada al sureste de la Península Ibérica, en la Región de Murcia, frente a las aguas próximas adyacentes del Mar Mediterráneo. Una vez que dicha
red de sensores sea desplegada en los próximos meses formará parte del Observatorio Oceanográfico
Costero de la Región de Murcia (OOCMur). Este trabajo describe la red de sensores inalámbrica propuesta especificando las tecnologías involucradas en el funcionamiento de la misma, se detalla la
instrumentación oceanográfica seleccionada de acuerdo a los requisitos del despliegue y finalmente se muestra en detalle el diseño de los nodos de la red.Asociación de Jóvenes Investigadores de Cartagena, (AJICT). Universidad Politécnica de Cartagena. Escuela Técnica Superior de Ingeniería Industrial UPCT, (ETSII). Escuela Técnica Superior de Ingeniería Agronómica, (ETSIA), Escuela Técnica Superior de Ingeniería de Telecomunicación (ETSIT). Escuela de Ingeniería de Caminos, Canales, y Puertos y de Ingeniería de Minas, (EICM). Fundación Séneca, Agencia Regional de Ciencia y Tecnología. Parque Tecnológico de Fuente Álamo. Grupo Aquilin
Optimización y mejora del aprendizaje mediante la utilización de la realidad virtual en las prácticas de grados y ciclos formativos
[ES] La realidad virtual se ha convertido en una herramienta que abre las posibilidades de la tecnología más allá de su uso para videojuegos. La inmersión en el contexto real en el que se desarrollan los acontecimientos permite extrapolar la capacidad de esa tecnología al mundo de la educación para mejorar el aprendizaje y adaptarlo a la demanda de las nuevas generaciones. Las RV permite ubicar al propio usuario dentro de un escenario virtual que reproduce el entorno de aprendizaje correspondiente. Mediante este proyecto perseguimos poner a disposición de los alumnos el contenido práctico de las asignaturas de grado y los módulos de formación profesional, de manera que puedan disponer de él permanentemente sin necesidad de presencialidad ni de un horario fijo. La flexibilidad y facilidad de acceso a estos contenidos permite, además, que por motivos de cualquier índole (laborales, personales, etc.) puedan realizar el seguimiento de las prácticas sin ningún tipo de impedimento. El proyecto engloba tanto a titulaciones de ciclo formativo (Higiene Bucodental y Realización de Proyectos Audiovisuales y Espectáculos) como de grado (Odontología y Arquitectura), mostrando la versatilidad y la extensión a los diferentes sectores a los que puede llegar la utilización de esta metodología docente.[EN] Virtual reality has become a tool that opens up the possibilities of technology beyond its use for video games. Immersion in the real context in which events takeplace allows the ability of this technology to be extrapolated to the world of education to improve learning and adapt it to the demand of new generations. Virtual reality allows to locate the user within a virtual scenario that reproduces the corresponding learning environment. Through this project we seek to make available to students the practical content of the undergraduate subjects and vocational training modules, so that they can have it permanently without the need for face-to-face or a fixed schedule. The flexibility and ease of access to these contents also allows that for reasons of any kind (labor, personal, etc.) can track the practices without difficulties. The project includes both training cycle degrees (Dental Hygiene and Audiovisual Projects) and degree (Odontology and Architecture), showing the versatility and extension to the different sectors to which the use of this teaching methodology can reach.Martínez Cuello, A.; Serra Soriano, B.; Piquer Maño, E.; García Romero, P.; Ribes Vallés, C.; Lloria Benet, MI. (2021). Optimización y mejora del aprendizaje mediante la utilización de la realidad virtual en las prácticas de grados y ciclos formativos. En IN-RED 2020: VI Congreso de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 346-356. https://doi.org/10.4995/INRED2020.2020.11975OCS34635
New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization
The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS) using array comparative genomic hybridization (aCGH). The study included 1420 CCS cycles for recurrent miscarriage (n = 203); repetitive implantation failure (n = 188); severe male factor (n = 116); previous trisomic pregnancy (n = 33); and advanced maternal age (n = 880). CCS was performed in cycles with fresh oocytes and embryos (n = 774); mixed cycles with fresh and vitrified oocytes (n = 320); mixed cycles with fresh and vitrified day-2 embryos (n = 235); and mixed cycles with fresh and vitrified day-3 embryos (n = 91). Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2%) and pregnancy rates per transfer (range: 46.0–62.9%) were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1%) due to the higher percentage of aneuploid embryos (85.3%) and lower number of cycles with at least one euploid embryo available per transfer (40.3%). We concluded that aneuploidy is one of the major factors which affect embryo implantation
La adaptación de materiales docentes de marketing para estudiantes con necesidades especiales. Proyecto Speaking Library
Este trabajo presenta la experiencia docente de una Red multidisciplinar de investigadores (Red I+Do+i), en la que han participado profesorado y estudiantes. El objetivo principal de la experiencia docente “Speaking Library” es tiene una doble vertiente. Por un lado, generar documentos de trabajo especializados en investigación en docencia y en materias curriculares relevantes para el alumnado, así como en soportes más accesibles, atractivos y útiles para la comunidad educativa. Se ha tenido especial interés en los estudiantes con Necesidades Específicas de Apoyo Educativo (NEAE) y en este sentido la creación de materiales ha sido fundamentalmente audiovisual. Por otro lado, la gestión dichos materiales a través de repositorios universitarios (Universidad de Alicante y Universidad Miguel Hernández) y de un canal docente de YouTube (canal IDOi), para su ulterior difusión nacional e internacional a las distintas bases de datos y portales adecuados (OCW, blogs UA, VUALA, Blogs externos, etc.) que facilitarán su consulta. Los resultados y reflexiones finales presentan varios documentos convertidos a un formato amigable, visual y valioso para los estudiantes con NEAE, a la vez que se ha diseñado un protocolo de actuación para la elaboración de los mismos y creado un canal docente en YouTube