68 research outputs found

    Modeling the 3-micron Class Er-Doped Fluoride Fiber Laser with a Cubic Energy Transfer Rate Dependence

    Full text link
    We propose an energy transfer model with a cubic atomic population dependence to accurately model the behavior of various reported high-power erbium-doped fluoride fiber lasers operating near 2.8 microns. We first show that the previously introduced weakly interacting (WI) and strongly interacting (SI) models are not adequate for precisely modeling such high-power erbium-doped fluoride fiber lasers. We compare results obtained with the WI and SI models to the proposed model by simulating 4 different highly doped (7 mol.%) fiber lasers previously reported in the literature. Laser efficiencies and powers are reproduced with great accuracy. In addition, four other independent fiber laser systems based on erbium doping concentrations varying from 1-6 mol.% are also simulated with good accuracy using the proposed model with the exact same set of spectroscopic parameters, which confirms its validity for various erbium doping concentrations. Redshifting of laser wavelength is also taken into account by considering the full cross section spectra and computing signal powers over several wavelength channels.Comment: 9 pages, 18 figures, submitted to IEEE Journal of Quantum Electronic

    10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm

    Get PDF
    We report, to the best of our knowledge, the first entirely monolithic dysprosium (Dy)-doped fluoride fiber laser operating in the mid-IR region. The system delivers 10.1 W at 3.24 μm in continuous operation, a record for fiber oscillators in this range of wavelengths. The Dy3+ fiber is pumped in-band using an erbium-doped fiber laser at 2.83 μm made in-house and connected through a fusion splice. Two fiber Bragg gratings directly written in the Dy-doped fiber form the 3.24 μm laser cavity to provide a spectrally controlled laser output. This substantial increase of output power in the 3.0 3.3 μm spectral range–could open new possibilities for applications in spec-troscopy and advanced manufacturing

    10 W-level gain-switched all-fiber laser at 2.8 μm

    Get PDF
    We report a simply designed gain-switched all-fiber laser emitting a maximum average output power of 11.2 W at 2.826 μm. The corresponding extracted pulse energy is 80 μJ at a pulse duration of 170 ns. These performances significantly surpass previous gain-switched demonstrations and are close to the state-of-the-art Q-switched laser performances near 2.8 μm, but with a much simpler and robust all-fiber design. The spliceless laser cavity is made of a heavily erbium-doped fluoride glass fiber and is bounded by fiber Bragg gratings written directly in the gain fiber through the protective polymer coating

    Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire

    Get PDF
    Mid-infrared optical waveguides were inscribed in sapphire with femtosecond pulses at 515 nm. We show that such pulses induce a smooth negative refractive index change allowing for the inscription of a depressed cladding waveguide by closely overlapping the corresponding type I modification traces. The resulting structure consists of a highly symmetrical, uniform, and homogeneous waveguide. The size and numerical aperture of the waveguides were tailored to achieve efficient transmission in the mid-infrared. Single mode operation at a wavelength of 2850 nm and propagation loss of <0.37  dB/cm are reported for a 33 mm long depressed cladding waveguide. Thermal annealing was performed, and the refractive index contrast was still preserved to 50% (i.e., Δ=∼2.5×10−3) up to 1400°C

    Direct inscription of on-surface waveguides in polymers using a mid-ir fiber laser

    Get PDF
    A detailed study of photo-inscribed optical waveguides in PMMA and polycarbonate using a mid-IR laser is presented. The wavelength of the laser is tuned near the absorption peaks of stretching C-H molecular bonds and the focused beam is scanned onto the surface of planar polymer samples. For the first time, we report the formation of optical waveguides in both polymers through resonant absorption of the laser beam. The optical properties of the waveguides were thoroughly assessed. An elliptic Gaussian mode is guided at the surface of both polymers. Insertion losses of 3.1 dB for a 30 mm long on-surface waveguide inscribed in PMMA were recorded. Such waveguides can interact with the external medium through evanescent coupling. As a proof of concept, the surface waveguides are used as highly sensitive refractometric sensors. An attenuation dynamical range of 35 dB was obtained for a liquid that matches the index of the PMMA substrate. Our results pave the way for large scale manufacturing of low cost biocompatible photonic devices

    Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses

    Get PDF
    Multiphoton absorption via ultrafast laser focusing is the only technology that allows a three-dimensional structural modification of transparent materials. However, the magnitude of the refractive index change is rather limited, preventing the technology from being a tool of choice for the manufacture of compact photonic integrated circuits. We propose to address this issue by employing a femtosecond-laser-induced electronic band-gap shift (FLIBGS), which has an exponential impact on the refractive index change for propagating wavelengths approaching the material electronic resonance, as predicted by the Kramers–Kronig relations. Supported by theoretical calculations, based on a modified Sellmeier equation, the Tauc law, and waveguide bend loss calculations, we experimentally show that several applications could take advantage of this phenomenon. First, we demonstrate waveguide bends down to a submillimeter radius, which is of great interest for higher-density integration of fs-laser-written quantum and photonic circuits. We also demonstrate that the refractive index contrast can be switched from negative to positive, allowing direct waveguide inscription in crystals. Finally, the effect of the FLIBGS can compensate for the fs-laser-induced negative refractive index change, resulting in a zero refractive index change at specific wavelengths, paving the way for new invisibility applications

    Dysprosium-doped silica fiber as saturable absorber for mid-infrared pulsed all-fiber lasers

    Get PDF
    We report on a mid-infrared Q-switched erbium-doped all-fiber laser using a dysprosium-doped silica fiber as saturable absorber for the first time in this wavelength range. Moreover, we demonstrate the use of a highly reflective chirped fiber Bragg grating written in a silica fiber as the input coupler for such lasers. This Q-switched all-fiber laser generates a stable pulse train centered at 2798 nm with a maximum average power of 670 mW at a repetition rate of 140 kHz with a pulse duration of 240 ns and a pulse energy of 4.9 µJ

    Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers

    Get PDF
    We report on infrared supercontinuum (SC) generation through subsequent nonlinear propagation in concatenated step-index fluoride and As2Se3 fiber. These fibers were pumped by an all-fiber laser source based on an erbium amplifier followed by a thulium power amplifier. ZBLAN and InF3 fibers were compared for the concatenated scheme. The broadest SC produced was achieved by optimizing the length of the InF3 fiber. This arrangement allowed the generation of 200 mW infrared SC with high spectral flatness and spanning from 1.4 μm to 6.4 μm

    Enhancing Evanescent Wave Coupling of Near-Surface Waveguides with Plasmonic Nanoparticles

    No full text
    Evanescent field excitation is a powerful means to achieve a high surface-to-bulk signal ratio for bioimaging and sensing applications. However, standard evanescent wave techniques such as TIRF and SNOM require complex microscopy setups. Additionally, the precise positioning of the source relative to the analytes of interest is required, as the evanescent wave is critically distance-dependent. In this work, we present a detailed investigation of evanescent field excitation of near-surface waveguides written using femtosecond laser in glass. We studied the waveguide-to-surface distance and refractive index change to attain a high coupling efficiency between evanescent waves and organic fluorophores. First, our study demonstrated a reduction in sensing efficiency for waveguides written at their minimum distance to the surface without ablation as the refractive index contrast of the waveguide increased. While this result was anticipated, it had not been previously demonstrated in the literature. Moreover, we found that fluorescence excitation by waveguides can be enhanced using plasmonic silver nanoparticles. The nanoparticles were also organized in linear assemblies, perpendicular to the waveguide, with a wrinkled PDMS stamp technique, which resulted in an excitation enhancement of over 20 times compared to the setup without nanoparticles
    • …
    corecore