1 research outputs found

    Advanced control strategy to maximize view and control discomforting glare: a complex adaptive façade

    Full text link
    Increasing demands for full-glazed façades have motivated designers/researchers to propose advanced control strategies for dynamic shading systems to mitigate the negative impacts of excessive sunlight penetration into interior spaces. Nevertheless, in line with the latter, outside view is commonly obstructed as a result of utilizing conventional shading systems including Venetian blinds. This is primarily the consequence of conventional systems’ lack of flexibility to respond appropriately to occupants’ requirements and the sun's changing orientation. This paper presents the virtual prototype development of a Multi-layer blind system through a brute-force algorithm. It emphasizes proposing a customizable and affordable complex shading system with advanced control strategies for multiple building typologies. The research intends to improve visual comfort (daylight and glare) and maximize unblocked window view in a single office room located in Tehran. Furthermore, the control system was developed based on a combination of the cut-off and a glare protection control strategy. Concerning the cut-off control system, the slat angles change to block direct sun radiations, and then, if needed, the position of the front slat, named ‘View slat’, changes to avoid discomforting glare. In conclusion, the proposed prototype could improve daylight performance by up to 44% and maximize unobstructed outdoor view by approximately 47% in an almost glare-free zone. Finally, the usage of swarm intelligence could significantly improve the performance of the proposed prototype by determining which blind and how they should respond to environmental changes and occupants’ requirements
    corecore