439 research outputs found
Efficient solvability of Hamiltonians and limits on the power of some quantum computational models
We consider quantum computational models defined via a Lie-algebraic theory.
In these models, specified initial states are acted on by Lie-algebraic quantum
gates and the expectation values of Lie algebra elements are measured at the
end. We show that these models can be efficiently simulated on a classical
computer in time polynomial in the dimension of the algebra, regardless of the
dimension of the Hilbert space where the algebra acts. Similar results hold for
the computation of the expectation value of operators implemented by a
gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field
Hamiltonians and show that they are efficiently ("exactly") solvable by means
of a Jacobi-like diagonalization method. Our results generalize earlier ones on
fermionic linear optics computation and provide insight into the source of the
power of the conventional model of quantum computation.Comment: 6 pages; no figure
Discovering the roots: Uniform closure results for algebraic classes under factoring
Newton iteration (NI) is an almost 350 years old recursive formula that
approximates a simple root of a polynomial quite rapidly. We generalize it to a
matrix recurrence (allRootsNI) that approximates all the roots simultaneously.
In this form, the process yields a better circuit complexity in the case when
the number of roots is small but the multiplicities are exponentially
large. Our method sets up a linear system in unknowns and iteratively
builds the roots as formal power series. For an algebraic circuit
of size we prove that each factor has size at most a
polynomial in: and the degree of the squarefree part of . Consequently,
if is a -hard polynomial then any nonzero multiple
is equally hard for arbitrary positive 's, assuming
that is at most .
It is an old open question whether the class of poly()-sized formulas
(resp. algebraic branching programs) is closed under factoring. We show that
given a polynomial of degree and formula (resp. ABP) size
we can find a similar size formula (resp. ABP) factor in
randomized poly()-time. Consequently, if determinant requires
size formula, then the same can be said about any of its
nonzero multiples.
As part of our proofs, we identify a new property of multivariate polynomial
factorization. We show that under a random linear transformation ,
completely factors via power series roots. Moreover, the
factorization adapts well to circuit complexity analysis. This with allRootsNI
are the techniques that help us make progress towards the old open problems,
supplementing the large body of classical results and concepts in algebraic
circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \&
Burgisser, FOCS 2001).Comment: 33 Pages, No figure
Classical simulation of noninteracting-fermion quantum circuits
We show that a class of quantum computations that was recently shown to be
efficiently simulatable on a classical computer by Valiant corresponds to a
physical model of noninteracting fermions in one dimension. We give an
alternative proof of his result using the language of fermions and extend the
result to noninteracting fermions with arbitrary pairwise interactions, where
gates can be conditioned on outcomes of complete von Neumann measurements in
the computational basis on other fermionic modes in the circuit. This last
result is in remarkable contrast with the case of noninteracting bosons where
universal quantum computation can be achieved by allowing gates to be
conditioned on classical bits (quant-ph/0006088).Comment: 26 pages, 1 figure, uses wick.sty; references added to recent results
by E. Knil
Set Similarity Search for Skewed Data
Set similarity join, as well as the corresponding indexing problem set
similarity search, are fundamental primitives for managing noisy or uncertain
data. For example, these primitives can be used in data cleaning to identify
different representations of the same object. In many cases one can represent
an object as a sparse 0-1 vector, or equivalently as the set of nonzero entries
in such a vector. A set similarity join can then be used to identify those
pairs that have an exceptionally large dot product (or intersection, when
viewed as sets). We choose to focus on identifying vectors with large Pearson
correlation, but results extend to other similarity measures. In particular, we
consider the indexing problem of identifying correlated vectors in a set S of
vectors sampled from {0,1}^d. Given a query vector y and a parameter alpha in
(0,1), we need to search for an alpha-correlated vector x in a data structure
representing the vectors of S. This kind of similarity search has been
intensely studied in worst-case (non-random data) settings.
Existing theoretically well-founded methods for set similarity search are
often inferior to heuristics that take advantage of skew in the data
distribution, i.e., widely differing frequencies of 1s across the d dimensions.
The main contribution of this paper is to analyze the set similarity problem
under a random data model that reflects the kind of skewed data distributions
seen in practice, allowing theoretical results much stronger than what is
possible in worst-case settings. Our indexing data structure is a recursive,
data-dependent partitioning of vectors inspired by recent advances in set
similarity search. Previous data-dependent methods do not seem to allow us to
exploit skew in item frequencies, so we believe that our work sheds further
light on the power of data dependence
Improved Simulation of Stabilizer Circuits
The Gottesman-Knill theorem says that a stabilizer circuit -- that is, a
quantum circuit consisting solely of CNOT, Hadamard, and phase gates -- can be
simulated efficiently on a classical computer. This paper improves that theorem
in several directions. First, by removing the need for Gaussian elimination, we
make the simulation algorithm much faster at the cost of a factor-2 increase in
the number of bits needed to represent a state. We have implemented the
improved algorithm in a freely-available program called CHP
(CNOT-Hadamard-Phase), which can handle thousands of qubits easily. Second, we
show that the problem of simulating stabilizer circuits is complete for the
classical complexity class ParityL, which means that stabilizer circuits are
probably not even universal for classical computation. Third, we give efficient
algorithms for computing the inner product between two stabilizer states,
putting any n-qubit stabilizer circuit into a "canonical form" that requires at
most O(n^2/log n) gates, and other useful tasks. Fourth, we extend our
simulation algorithm to circuits acting on mixed states, circuits containing a
limited number of non-stabilizer gates, and circuits acting on general
tensor-product initial states but containing only a limited number of
measurements.Comment: 15 pages. Final version with some minor updates and corrections.
Software at http://www.scottaaronson.com/ch
Adiabatic quantum algorithm for search engine ranking
We propose an adiabatic quantum algorithm for generating a quantum pure state
encoding of the PageRank vector, the most widely used tool in ranking the
relative importance of internet pages. We present extensive numerical
simulations which provide evidence that this algorithm can prepare the quantum
PageRank state in a time which, on average, scales polylogarithmically in the
number of webpages. We argue that the main topological feature of the
underlying web graph allowing for such a scaling is the out-degree
distribution. The top ranked entries of the quantum PageRank state
can then be estimated with a polynomial quantum speedup. Moreover, the quantum
PageRank state can be used in "q-sampling" protocols for testing properties of
distributions, which require exponentially fewer measurements than all
classical schemes designed for the same task. This can be used to decide
whether to run a classical update of the PageRank.Comment: 7 pages, 5 figures; closer to published versio
Classical simulation of measurement-based quantum computation on higher-genus surface-code states
We consider the efficiency of classically simulating measurement-based
quantum computation on surface-code states. We devise a method for calculating
the elements of the probability distribution for the classical output of the
quantum computation. The operational cost of this method is polynomial in the
size of the surface-code state, but in the worst case scales as in the
genus of the surface embedding the code. However, there are states in the
code space for which the simulation becomes efficient. In general, the
simulation cost is exponential in the entanglement contained in a certain
effective state, capturing the encoded state, the encoding and the local
post-measurement states. The same efficiencies hold, with additional
assumptions on the temporal order of measurements and on the tessellations of
the code surfaces, for the harder task of sampling from the distribution of the
computational output.Comment: 21 pages, 13 figure
A Distributed Multilevel Force-directed Algorithm
The wide availability of powerful and inexpensive cloud computing services
naturally motivates the study of distributed graph layout algorithms, able to
scale to very large graphs. Nowadays, to process Big Data, companies are
increasingly relying on PaaS infrastructures rather than buying and maintaining
complex and expensive hardware. So far, only a few examples of basic
force-directed algorithms that work in a distributed environment have been
described. Instead, the design of a distributed multilevel force-directed
algorithm is a much more challenging task, not yet addressed. We present the
first multilevel force-directed algorithm based on a distributed vertex-centric
paradigm, and its implementation on Giraph, a popular platform for distributed
graph algorithms. Experiments show the effectiveness and the scalability of the
approach. Using an inexpensive cloud computing service of Amazon, we draw
graphs with ten million edges in about 60 minutes.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
On Measuring Non-Recursive Trade-Offs
We investigate the phenomenon of non-recursive trade-offs between
descriptional systems in an abstract fashion. We aim at categorizing
non-recursive trade-offs by bounds on their growth rate, and show how to deduce
such bounds in general. We also identify criteria which, in the spirit of
abstract language theory, allow us to deduce non-recursive tradeoffs from
effective closure properties of language families on the one hand, and
differences in the decidability status of basic decision problems on the other.
We develop a qualitative classification of non-recursive trade-offs in order to
obtain a better understanding of this very fundamental behaviour of
descriptional systems
- …