5 research outputs found

    Surface Josephson plasma waves in layered superconductors

    Full text link
    We predict the existence of surface waves in layered superconductors in the THz frequency range, below the Josephson plasma frequency ωJ\omega_J. This wave propagates along the vacuum-superconductor interface and dampens in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). This is the first prediction of propagating surface waves in any superconductor. These predicted surface Josephson plasma waves are important for different phenomena, including the complete suppression of the specular reflection from a sample (Wood's anomalies) and a huge enhancement of the wave absorption (which can be used as a THz detector).Comment: 4 pages, 2 figure

    Generation of tunable Terahertz out-of-plane radiation using Josephson vortices in modulated layered superconductors

    Full text link
    We show that a moving Josephson vortex in spatially modulated layered superconductors generates out-of-plane THz radiation. Remarkably, the magnetic and in-plane electric fields radiated are of the same order, which is very unusual for any good-conducting medium. Therefore, the out-of-plane radiation can be emitted to the vacuum without the standard impedance mismatch problem. Thus, the proposed design can be more efficient for tunable THz emitters than previous proposals, for radiation only propagating along the ab-plane.Comment: 7 pages, 1 figure. Phys. Rev. B (2005), in pres
    corecore