45 research outputs found

    Data Reduction in the String Space for Efficient kNN Classification through Space Partitioning

    Get PDF
    Within the Pattern Recognition field, two representations are generally considered for encoding the data: statistical codifications, which describe elements as feature vectors, and structural representations, which encode elements as high-level symbolic data structures such as strings, trees or graphs. While the vast majority of classifiers are capable of addressing statistical spaces, only some particular methods are suitable for structural representations. The kNN classifier constitutes one of the scarce examples of algorithms capable of tackling both statistical and structural spaces. This method is based on the computation of the dissimilarity between all the samples of the set, which is the main reason for its high versatility, but in turn, for its low efficiency as well. Prototype Generation is one of the possibilities for palliating this issue. These mechanisms generate a reduced version of the initial dataset by performing data transformation and aggregation processes on the initial collection. Nevertheless, these generation processes are quite dependent on the data representation considered, being not generally well defined for structural data. In this work we present the adaptation of the generation-based reduction algorithm Reduction through Homogeneous Clusters to the case of string data. This algorithm performs the reduction by partitioning the space into class-homogeneous clusters for then generating a representative prototype as the median value of each group. Thus, the main issue to tackle is the retrieval of the median element of a set of strings. Our comprehensive experimentation comparatively assesses the performance of this algorithm in both the statistical and the string-based spaces. Results prove the relevance of our approach by showing a competitive compromise between classification rate and data reduction.This research work was partially funded by “Programa I+D+i de la Generalitat Valenciana” through grant ACIF/2019/ 042 and the Spanish Ministry through HISPAMUS project TIN2017-86576-R, partially funded by the EU

    Exploiting the Two-Dimensional Nature of Agnostic Music Notation for Neural Optical Music Recognition

    Get PDF
    State-of-the-art Optical Music Recognition (OMR) techniques follow an end-to-end or holistic approach, i.e., a sole stage for completely processing a single-staff section image and for retrieving the symbols that appear therein. Such recognition systems are characterized by not requiring an exact alignment between each staff and their corresponding labels, hence facilitating the creation and retrieval of labeled corpora. Most commonly, these approaches consider an agnostic music representation, which characterizes music symbols by their shape and height (vertical position in the staff). However, this double nature is ignored since, in the learning process, these two features are treated as a single symbol. This work aims to exploit this trademark that differentiates music notation from other similar domains, such as text, by introducing a novel end-to-end approach to solve the OMR task at a staff-line level. We consider two Convolutional Recurrent Neural Network (CRNN) schemes trained to simultaneously extract the shape and height information and to propose different policies for eventually merging them at the actual neural level. The results obtained for two corpora of monophonic early music manuscripts prove that our proposal significantly decreases the recognition error in figures ranging between 14.4% and 25.6% in the best-case scenarios when compared to the baseline considered.This research work was partially funded by the University of Alicante through project GRE19-04, by the “Programa I+D+i de la Generalitat Valenciana” through grant APOSTD/2020/256, and by the Spanish Ministerio de Universidades through grant FPU19/04957

    Predicting performance difficulty from piano sheet music images

    Full text link
    Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility

    Interactive user correction of automatically detected onsets: approach and evaluation

    Get PDF
    Onset detection still has room for improvement, especially when dealing with polyphonic music signals. For certain purposes in which the correctness of the result is a must, user intervention is hence required to correct the mistakes performed by the detection algorithm. In such interactive paradigm, the exactitude of the detection can be guaranteed at the expense of user’s work, being the effort required to accomplish the task, the value that has to be both quantified and reduced. The present work studies the idea of interactive onset detection and proposes a methodology for assessing the user’s workload, as well as a set of interactive schemes for reducing such workload when carrying out this detection task. Results show that the evaluation strategy proposed is able to quantitatively assess the invested user effort. Also, the presented interactive schemes significantly facilitate the correction task compared with the manual annotation.This research work is partially supported by the Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante through FPU program (UAFPU2014–5883) and the Spanish Ministerio de Economía y Competitividad through the TIMuL project (No. TIN2013–48152–C2–1–R, supported by EU FEDER funds)

    Improving kNN multi-label classification in Prototype Selection scenarios using class proposals

    Get PDF
    Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classification by keeping only the most profitable prototypes of the training set. In turn, these schemes typically lower the performance accuracy. In this work a new strategy for multi-label classifications tasks is proposed to solve this accuracy drop without the need of using all the training set. For that, given a new instance, the PS algorithm is used as a fast recommender system which retrieves the most likely classes. Then, the actual classification is performed only considering the prototypes from the initial training set belonging to the suggested classes. Results show that this strategy provides a large set of trade-off solutions which fills the gap between PS-based classification efficiency and conventional kNN accuracy. Furthermore, this scheme is not only able to, at best, reach the performance of conventional kNN with barely a third of distances computed, but it does also outperform the latter in noisy scenarios, proving to be a much more robust approach.This work was partially supported by the Spanish Ministerio de Educación, Cultura y Deporte through FPU Fellowship (AP2012–0939), the Spanish Ministerio de Economía y Competitividad through Project TIMuL (TIN2013-48152-C2-1-R), Consejería de Educación de la Comunidad Valenciana through Project PROMETEO/2012/017 and Vicerrectorado de Investigación, Desarrollo e Innovación de la Universidad de Alicante through FPU Program (UAFPU2014–5883)

    An overview of ensemble and feature learning in few-shot image classification using siamese networks

    Get PDF
    Siamese Neural Networks (SNNs) constitute one of the most representative approaches for addressing Few-Shot Image Classification. These schemes comprise a set of Convolutional Neural Network (CNN) models whose weights are shared across the network, which results in fewer parameters to train and less tendency to overfit. This fact eventually leads to better convergence capabilities than standard neural models when considering scarce amounts of data. Based on a contrastive principle, the SNN scheme jointly trains these inner CNN models to map the input image data to an embedded representation that may be later exploited for the recognition process. However, in spite of their extensive use in the related literature, the representation capabilities of SNN schemes have neither been thoroughly assessed nor combined with other strategies for boosting their classification performance. Within this context, this work experimentally studies the capabilities of SNN architectures for obtaining a suitable embedded representation in scenarios with a severe data scarcity, assesses the use of train data augmentation for improving the feature learning process, introduces the use of transfer learning techniques for further exploiting the embedded representations obtained by the model, and uses test data augmentation for boosting the performance capabilities of the SNN scheme by mimicking an ensemble learning process. The results obtained with different image corpora report that the combination of the commented techniques achieves classification rates ranging from 69% to 78% with just 5 to 20 prototypes per class whereas the CNN baseline considered is unable to converge. Furthermore, upon the convergence of the baseline model with the sufficient amount of data, still the adequate use of the studied techniques improves the accuracy in figures from 4% to 9%.First author is supported by the “Programa I+D+i de la Generalitat Valenciana” through grant APOSTD/2020/256. This research work was partially funded by the Spanish “Ministerio de Ciencia e Innovación” and the European Union “NextGenerationEU/PRTR” programmes through project DOREMI (TED2021-132103A-I00). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature

    Extensions to rank-based prototype selection in k-Nearest Neighbour classification

    Get PDF
    The k-nearest neighbour rule is commonly considered for classification tasks given its straightforward implementation and good performance in many applications. However, its efficiency represents an obstacle in real-case scenarios because the classification requires computing a distance to every single prototype of the training set. Prototype Selection (PS) is a typical approach to alleviate this problem, which focuses on reducing the size of the training set by selecting the most interesting prototypes. In this context, rank methods have been postulated as a good solution: following some heuristics, these methods perform an ordering of the prototypes according to their relevance in the classification task, which is then used to select the most relevant ones. This work presents a significant improvement of existing rank methods by proposing two extensions: (i) a greater robustness against noise at label level by considering the parameter ‘k’ of the classification in the selection process; and (ii) a new parameter-free rule to select the prototypes once they have been ordered. The experiments performed in different scenarios and datasets demonstrate the goodness of these extensions. Also, it is empirically proved that the new full approach is competitive with respect to existing PS algorithms.This work is supported by the Spanish Ministry HISPAMUS project TIN2017-86576-R, partially funded by the EU

    Multilabel Prototype Generation for Data Reduction in k-Nearest Neighbour classification

    Get PDF
    Prototype Generation (PG) methods are typically considered for improving the efficiency of the kk-Nearest Neighbour (kkNN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced version of the corpus without decreasing the classification performance when compared to the initial set. Despite their large application in multiclass scenarios, very few works have addressed the proposal of PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel kkNN-based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise scenarios artificially induced in the data. The results obtained show that the proposed adaptations are capable of significantly improving -- both in terms of efficiency and classification performance -- the only reference multilabel PG work in the literature as well as the case in which no PG method is applied, also presenting a statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow prioritising either the efficiency or efficacy criteria through its configuration depending on the target scenario, hence covering a wide area in the solution space not previously filled by other works

    Multilabel Prototype Generation for data reduction in K-Nearest Neighbour classification

    Get PDF
    Prototype Generation (PG) methods are typically considered for improving the efficiency of the k-Nearest Neighbour (kNN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced version of the corpus without decreasing the classification performance when compared to the initial set. Despite their large application in multiclass scenarios, very few works have addressed the proposal of PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel kNN-based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise scenarios artificially induced in the data. The results obtained show that the proposed adaptations are capable of significantly improving—both in terms of efficiency and classification performance—the only reference multilabel PG work in the literature as well as the case in which no PG method is applied, also presenting statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow prioritising either the efficiency or efficacy criteria through its configuration depending on the target scenario, hence covering a wide area in the solution space not previously filled by other works.This research was partially funded by the Spanish Ministerio de Ciencia e Innovación through the MultiScore (PID2020-118447RA-I00) and DOREMI (TED2021-132103A-I00) projects. The first author is supported by grant APOSTD/2020/256 from “Programa I+D+i de la Generalitat Valenciana”

    Late multimodal fusion for image and audio music transcription

    Get PDF
    Music transcription, which deals with the conversion of music sources into a structured digital format, is a key problem for Music Information Retrieval (MIR). When addressing this challenge in computational terms, the MIR community follows two lines of research: music documents, which is the case of Optical Music Recognition (OMR), or audio recordings, which is the case of Automatic Music Transcription (AMT). The different nature of the aforementioned input data has conditioned these fields to develop modality-specific frameworks. However, their recent definition in terms of sequence labeling tasks leads to a common output representation, which enables research on a combined paradigm. In this respect, multimodal image and audio music transcription comprises the challenge of effectively combining the information conveyed by image and audio modalities. In this work, we explore this question at a late-fusion level: we study four combination approaches in order to merge, for the first time, the hypotheses regarding end-to-end OMR and AMT systems in a lattice-based search space. The results obtained for a series of performance scenarios–in which the corresponding single-modality models yield different error rates–showed interesting benefits of these approaches. In addition, two of the four strategies considered significantly improve the corresponding unimodal standard recognition frameworks.This paper is part of the I+D+i PID2020-118447RA-I00 (MultiScore) project, funded by MCIN/AEI/10.13039/501100011033. Some of the computing resources were provided by the Generalitat Valenciana and the European Union through the FEDER funding programme (IDIFEDER/2020/003). The first and second authors are respectively supported by grants FPU19/04957 from the Spanish Ministerio de Universidades and APOSTD/2020/256 from Generalitat Valenciana
    corecore