5,798 research outputs found

    Black holes and wormholes subject to conformal mappings

    Full text link
    Solutions of the field equations of theories of gravity which admit distinct conformal frame representations can look very different in these frames. We show that Brans class IV solutions describe wormholes in the Jordan frame (in a certain parameter range) but correspond to horizonless geometries in the Einstein frame. The reasons for such a change of behaviour under conformal mappings are elucidated in general, using Brans IV solutions as an example.Comment: 7 pages, 2 figure

    The Quantum Frontier

    Full text link
    The success of the abstract model of computation, in terms of bits, logical operations, programming language constructs, and the like, makes it easy to forget that computation is a physical process. Our cherished notions of computation and information are grounded in classical mechanics, but the physics underlying our world is quantum. In the early 80s researchers began to ask how computation would change if we adopted a quantum mechanical, instead of a classical mechanical, view of computation. Slowly, a new picture of computation arose, one that gave rise to a variety of faster algorithms, novel cryptographic mechanisms, and alternative methods of communication. Small quantum information processing devices have been built, and efforts are underway to build larger ones. Even apart from the existence of these devices, the quantum view on information processing has provided significant insight into the nature of computation and information, and a deeper understanding of the physics of our universe and its connections with computation. We start by describing aspects of quantum mechanics that are at the heart of a quantum view of information processing. We give our own idiosyncratic view of a number of these topics in the hopes of correcting common misconceptions and highlighting aspects that are often overlooked. A number of the phenomena described were initially viewed as oddities of quantum mechanics. It was quantum information processing, first quantum cryptography and then, more dramatically, quantum computing, that turned the tables and showed that these oddities could be put to practical effect. It is these application we describe next. We conclude with a section describing some of the many questions left for future work, especially the mysteries surrounding where the power of quantum information ultimately comes from.Comment: Invited book chapter for Computation for Humanity - Information Technology to Advance Society to be published by CRC Press. Concepts clarified and style made more uniform in version 2. Many thanks to the referees for their suggestions for improvement

    Are quantization rules for horizon areas universal?

    Full text link
    Doubts have been expressed on the universality of holographic/string-inspired quantization rules for the horizon areas of stationary black holes or the products of their radii, already in simple 4-dimensional general relativity. Realistic black holes are not stationary but time-dependent. Using two examples of 4D general-relativistic spacetimes containing dynamical black holes for at least part of the time, it is shown that the quantization rules (even counting virtual horizons) cannot hold, except possibly at isolated instants of time, and do not seem to be universal.Comment: One example and one figure added, two figures improved, bibliography expanded and updated. Matches the version accepted for publication in Phys. Rev.

    Probing Quantum Optical Excitations with Fast Electrons

    Full text link
    Probing optical excitations with nanometer resolution is important for understanding their dynamics and interactions down to the atomic scale. Electron microscopes currently offer the unparalleled ability of rendering spatially-resolved electron spectra with combined meV and sub-nm resolution, while the use of ultrafast optical pulses enables fs temporal resolution and exposure of the electrons to ultraintense confined optical fields. Here, we theoretically investigate fundamental aspects of the interaction of fast electrons with localized optical modes that are made possible by these advances. We use a quantum-optics description of the optical field to predict that the resulting electron spectra strongly depend on the statistics of the sample excitations (bosonic or fermionic) and their population (Fock, coherent, or thermal), whose autocorrelation functions are directly retrieved from the ratios of electron gain intensities. We further explore feasible experimental scenarios to probe the quantum characteristics of the sampled excitations and their populations.Comment: 13 pages, 6 figures, 56 reference
    • …
    corecore