7 research outputs found

    Temperature as a Chaotic Circuit Bifurcation Parameter

    Get PDF
    The number of researches aimed at understanding the chaotic behavior of nonlinear dynamical systems has grown considerably in recent years. The development of electronic circuits that exhibit this type of behavior has been the interest of numerous works in the literature. Among the possible sets of nonlinear systems, the simplest in which one can observe bifurcation phenomena and chaotic behavior, followed by well– controlled experiments, are nonlinear electronic circuits. One of the most widely used tools for analysis and evaluation of chaotic behavior is known as the bifurcation diagram. Generally, in the analysis of these circuits, parameters such as voltage, current and frequency are used to verify their respective behaviors. Variable values of passive components such as resistors and capacitors are also widely used. The temperature has also been used as a bifurcation parameter in resistor, diode and inductor (RLD) circuits. However, there is little attention from the scientific community on temperature as a bifurcation parameter for electronic circuits using operational amplifiers such as the chaotic Jerk circuit. In this sense, this project aims to implement a chaotic Jerk circuit, composed of operational amplifiers, resistors and capacitors, and subject it to different temperature levels, using this variable as an analysis parameter. Thus, at the end of this work it was possible to verify that the temperature variation directly influences the behavior of the investigated system, thus reaching the final objective of the project, presenting that the temperature can be a bifurcation parameter for a chaotic Jerk circuit

    Study of two-memcapacitor circuit model with semi-explicit ODE solver

    No full text
    This article discusses software tools for studying non-linear dynamical systems. For a detailed analysis of the behavior of chaotic systems stepsize-parameter diagrams are introduced. A new self-adjoint semi-explicit algorithm for the numerical integration of differential equations is described. Two modifications of the proposed method are represented. A two-memcapacitor circuit is selected as a test dynamical system. Symmetry, accuracy and performance analysis of semi-explicit extrapolation ODE solver are considered in a series of computational experiments. Phase space of the two-memcapacitor circuit model, stepsize-parameter diagrams and dynamical maps are given as experimental findings

    Temperature as a Chaotic Circuit Bifurcation Parameter

    Get PDF
    The number of researches aimed at understanding the chaotic behavior of nonlinear dynamical systems has grown considerably in recent years. The development of electronic circuits that exhibit this type of behavior has been the interest of numerous works in the literature. Among the possible sets of nonlinear systems, the simplest in which one can observe bifurcation phenomena and chaotic behavior, followed by well– controlled experiments, are nonlinear electronic circuits. One of the most widely used tools for analysis and evaluation of chaotic behavior is known as the bifurcation diagram. Generally, in the analysis of these circuits, parameters such as voltage, current and frequency are used to verify their respective behaviors. Variable values of passive components such as resistors and capacitors are also widely used. The temperature has also been used as a bifurcation parameter in resistor, diode and inductor (RLD) circuits. However, there is little attention from the scientific community on temperature as a bifurcation parameter for electronic circuits using operational amplifiers such as the chaotic Jerk circuit. In this sense, this project aims to implement a chaotic Jerk circuit, composed of operational amplifiers, resistors and capacitors, and subject it to different temperature levels, using this variable as an analysis parameter. Thus, at the end of this work it was possible to verify that the temperature variation directly influences the behavior of the investigated system, thus reaching the final objective of the project, presenting that the temperature can be a bifurcation parameter for a chaotic Jerk circuit

    Temperature as a Chaotic Circuit Bifurcation Parameter

    No full text
    The number of researches aimed at understanding the chaotic behavior of nonlinear dynamical systems has grown considerably in recent years. The development of electronic circuits that exhibit this type of behavior has been the interest of numerous works in the literature. Among the possible sets of nonlinear systems, the simplest in which one can observe bifurcation phenomena and chaotic behavior, followed by well– controlled experiments, are nonlinear electronic circuits. One of the most widely used tools for analysis and evaluation of chaotic behavior is known as the bifurcation diagram. Generally, in the analysis of these circuits, parameters such as voltage, current and frequency are used to verify their respective behaviors. Variable values of passive components such as resistors and capacitors are also widely used. The temperature has also been used as a bifurcation parameter in resistor, diode and inductor (RLD) circuits. However, there is little attention from the scientific community on temperature as a bifurcation parameter for electronic circuits using operational amplifiers such as the chaotic Jerk circuit. In this sense, this project aims to implement a chaotic Jerk circuit, composed of operational amplifiers, resistors and capacitors, and subject it to different temperature levels, using this variable as an analysis parameter. Thus, at the end of this work it was possible to verify that the temperature variation directly influences the behavior of the investigated system, thus reaching the final objective of the project, presenting that the temperature can be a bifurcation parameter for a chaotic Jerk circuit

    New Spectral Markers for Broken Bars Diagnostics in Induction Motors

    Get PDF
    The paper discusses the spectral markers of fault rotor bars in induction motor current signature analysis (MCSA). The results of the simulation of the deterioration process for a single rotor bar, as well as the results of research for various mutual bracing of two broken bars, are reported. We proposed a simple empiric technique allowing one to obtain frequencies for spectrum markers of damaged rotor bars based on simulation analysis. The set of frequencies obtained in the experimental part of the study was compared with simulation results and the results of real-life measurements. The theoretical results were verified through the experiment with the real induction motor under load. Analysis of experimental results proved that the given algorithm for spectrum analysis is suitable for early detection of fault rotor bars in induction motors

    Comparing the Finite-Difference Schemes in the Simulation of Shunted Josephson Junctions

    No full text
    The paper provides investigation of the numerical effects in finite-difference models of RLC-shunted circuit simulating Josephson junction. We study digital models of the circuit obtained by explicit, implicit and semi-explicit Euler methods. The Dormand-Prince 8 ODE solver is used for verification as a reference method. Two aspects of the RLC- shunted Josephson junction model are considered: the dynamical maps (two-dimensional bifurcation diagrams) and chaotic transients existing in the system within a certain parameter range. We show that both explicit and implicit Euler methods distort the dynamical properties, including stretching or compressing the dynamical maps and changing chaotic transient lifetime decay curve. Experiments demonstrate high reliability of the first-order Euler-Cromer method in simulation of the shunted Josephson junction model which yields data close to the reference data. Obtained results bring new accurate chaotic transient lifetime decay equation for the RLC-shunted Josephson junction model
    corecore