2 research outputs found

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Purification of normal cellular prion protein from human platelets and the formation of a high molecular weight prion protein complex following platelet activation

    No full text
    A method for the extraction and purification of PrPC, in its native monomeric form, from outdated human platelet concentrates is described. Both calcium ionophore platelet activation and lysis in Triton X-100 were evaluated as methods for the extraction of soluble platelet PrPC in its monomeric form. Following platelet activation, the majority of released PrPC was detected as a disulphide linked high molecular weight complex, which under reducing conditions could be separated into what appear to be stable non-disulphide linked PrP dimers or PrP covalently linked to another as yet unidentified protein. This phenomenon appears to be unique to activation since only monomeric PrPC was detected following lysis of resting platelets. Subsequently, PrPC was purified from the Triton X-100 lysate by sequential cation ion exchange and Cu2+ affinity chromatography. From 10 L of outdated platelet concentrate, we were able to recover 1.29 mg PrPC at a purity of 92%
    corecore