214 research outputs found

    Gus Born: scientific reflections of later years, inspiring the next generation of blood researchers

    Get PDF
    I am delighted to have been be asked by Steve Watson to write a short piece for this series in Platelets, on my friendship with Prof Gus Born which began in 2011, when he came to Cardiff to present at our UK Platelets meeting. Gus was an insipiration, his story resonates today and it is an honour to have the opportunity to record a summary of our meetings here

    Lipidomics moves to center stage of biomedicine

    Get PDF

    New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease

    Get PDF
    The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958–65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease

    Directing eicosanoid esterification into phospholipids

    Get PDF

    LipidFinder: a computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets

    Get PDF
    Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides

    Phospholipid signaling in innate immune cells

    Get PDF
    Phospholipids comprise a large body of lipids that define cells and organelles by forming membrane structures. Importantly, their complex metabolism represents a highly controlled cellular signaling network that is essential for mounting an effective innate immune response. Phospholipids in innate cells are subject to dynamic regulation by enzymes, whose activities are highly responsive to activation status. Along with their metabolic products, they regulate multiple aspects of innate immune cell biology, including shape change, aggregation, blood clotting, and degranulation. Phospholipid hydrolysis provides substrates for cell-cell communication, enables regulation of hemostasis, immunity, thrombosis, and vascular inflammation, and is centrally important in cardiovascular disease and associated co-morbidities. Phospholipids themselves are also recognized by innate-like T cells, which are considered essential for recognition of infection or cancer, as well as self-antigens. This review will describe the major phospholipid metabolic pathways present in innate immune cells and summarize the formation and metabolism of phospholipids as well as their emerging roles in cell biology and disease

    Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes

    The precise structures and stereochemistry of trihydroxy-linoleates esterified in human and porcine epidermis and their significance in skin barrier function: Implication of an epoxide hydrolase in the transformations of linoleate

    Get PDF
    Creation of an intact skin water barrier, a prerequisite for life on dry land, requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate, which is esterified to the ω-hydroxyl of an epidermis-specific ceramide. Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for covalent binding to protein, thus forming the corneocyte lipid envelope, a key component of the epidermal barrier. Herein, we report the transformations of esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol synthesis catalyzed by the consecutive actions of 12R-LOX and epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy derivative, formed with a specificity that implicates participation of an epoxide hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses, we identify and quantify specifically 9R,10S,13R-trihydroxy-11E-octadecenoate as the single major triol esterified in porcine epidermis and the same isomer with lesser amounts of its 10R diastereomer in human epidermis. The 9R,10S,13R-triol is formed by SN2 hydrolysis of the 9R,10R-epoxy-13R-hydroxy-octadecenoate product of the LOX enzymes, a reaction specificity characteristic of epoxide hydrolase. The high polarity of triol over the primary linoleate products enhances the concept that the oxidations disrupt corneocyte membrane lipids, promoting release of free ω-hydroxyceramide for covalent binding to protein and sealing of the waterproof barrier

    The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling

    Get PDF
    Foundational advances in eicosanoid signaling, the free radical biology of oxygen and nitric oxide and mass spectrometry all converged to enable the discovery of nitrated unsaturated fatty acids. Due to the unique biochemical characteristics of fatty acid nitroalkenes, these species undergo rapid and reversible Michael addition of biological nucleophiles such as cysteine, leading to the post-translational modification of low molecular weight and protein thiols. This capability has led to the present understanding that nitro-fatty acid reaction with the alkylation-sensitive cysteine proteome leads to physiologically-beneficial alterations in transcriptional regulatory protein function, gene expression and in vivo rodent model responses to metabolic and inflammatory stress. These findings motivated the preclinical and clinical development of nitro-fatty acids as new drug candidates for treating acute and chronic metabolic and inflammatory disorders
    • …
    corecore