7 research outputs found

    3D Calibration Test-Field for Digital Cameras Mounted on Unmanned Aerial Systems (UAS)

    No full text
    Due to the large number of technological developments in recent years, UAS systems are now used for monitoring purposes and in projects with high precision demand, such as 3D model-based creation of dams, reservoirs, historical monuments etc. These unmanned systems are usually equipped with an automatic pilot device and a digital camera (photo/video, multispectral, Near Infrared etc.), of which the lens has distortions; but this can be determined in a calibration process. Currently, a method of “self-calibration„ is used for the calibration of the digital cameras mounted on UASs, but, by using the method of calibration based on a 3D calibration object, the accuracy is improved in comparison with other methods. Thus, this paper has the objective of establishing a 3D calibration field for the digital cameras mounted on UASs in terms of accuracy and robustness, being the largest reported publication to date. In order to test the proposed calibration field, a digital camera mounted on a low-cost UAS was calibrated at three different heights: 23 m, 28 m, and 35 m, using two configurations for image acquisition. Then, a comparison was made between the residuals obtained for a number of 100 Check Points (CPs) using self-calibration and test-field calibration, while the number of Ground Control Points (GCPs) variedand the heights were interchanged. Additionally, the parameters where tested on an oblique flight done 2 years before calibration, in manual mode at a medium altitude of 28 m height. For all tests done in the case of the double grid nadiral flight, the parameters calculated with the proposed 3D field improved the results by more than 50% when using the optimum and a large number of GCPs, and in all analyzed cases with 75% to 95% when using a minimum of 3 GCP. In this context, it is necessary to conduct accurate calibration in order to increase the accuracy of the UAS projects, and also to reduce field measurements

    Determining the Optimum Number of Ground Control Points for Obtaining High Precision Results Based on UAS Images

    No full text
    Ground control points (GCPs) are used in the process of indirectly georeferencing Unmanned Aerial Systems (UAS) images. A minimum of three ground control points (GCPs) is required but increasing the number of GCPs will lead to higher accuracy of the final results. The aim of this study is to provide the answer to the question of how many ground control points are necessary in order to derive high precision results. To obtain the results, an area of about 1 ha was photographed with a low-cost UAS, namely, the DJI Phantom 3 Standard at two different heights, 28 m and 35 m above ground, the camera being oriented in a nadiral position, and 50 ground control points were measured using a total station. In the first and the second scenario, the UAS images were processed using the Pix4D Mapper Pro software and 3DF Zephyr, respectively, by performing a full bundle adjustment process with the number being gradually increased from three GCPs to 40. The third test was made with 3DF Zephyr Pro software using a free-network approach in the bundle adjustment. Also, the point clouds and the mesh surfaces derived automatically after using the minimum and the optimum number of GCPs, respectively, were compared with a terrestrial laser scanner (TLS) point cloud. The results expressed a clear overview of the number of GCPs needed for the indirect georeferencing process with minimum influence on the final results

    Determining the Suitable Number of Ground Control Points for UAS Images Georeferencing by Varying Number and Spatial Distribution

    No full text
    Currently, products that are obtained by Unmanned Aerial Systems (UAS) image processing based on structure-from-motion photogrammetry (SfM) are being investigated for use in high precision projects. Independent of the georeferencing process being done directly or indirectly, Ground Control Points (GCPs) are needed to increase the accuracy of the obtained products. A minimum of three GCPs is required to bring the results into a desired coordinate system through the indirect georeferencing process, but it is well known that increasing the number of GCPs will lead to a higher accuracy of the final results. The aim of this study is to find the suitable number of GCPs to derive high precision results and what is the effect of GCPs systematic or stratified random distribution on the accuracy of the georeferencing process and the final products, respectively. The case study involves an urban area of about 1 ha that was photographed with a low-cost UAS, namely, the DJI Phantom 3 Standard, at 28 m above ground. The camera was oriented in a nadiral position and 300 points were measured using a total station in a local coordinate system. The UAS images were processed using the 3DF Zephyr software performing a full BBA with a variable number of GCPs i.e., from four up to 150, while the number and the spatial location of check points (ChPs) was kept constant i.e., 150 for each independent distribution. In addition, the systematic and stratified random distribution of GCPs and ChPs spatial positions was analysed. Furthermore, the point clouds and the mesh surfaces that were automatically derived were compared with a terrestrial laser scanner (TLS) point cloud while also considering three test areas: two inside the area defined by GCPs and one outside the area. The results expressed a clear overview of the number of GCPs needed for the indirect georeferencing process with minimum influence on the final results. The RMSE can be reduced down to 50% when switching from four to 20 GCPs, whereas a higher number of GCPs only slightly improves the results

    3D Modeling of Urban Area Based on Oblique UAS Images—An End-to-End Pipeline

    No full text
    3D modelling of urban areas is an attractive and active research topic, as 3D digital models of cities are becoming increasingly common for urban management as a consequence of the constantly growing number of people living in cities. Viewed as a digital representation of the Earth’s surface, an urban area modeled in 3D includes objects such as buildings, trees, vegetation and other anthropogenic structures, highlighting the buildings as the most prominent category. A city’s 3D model can be created based on different data sources, especially LiDAR or photogrammetric point clouds. This paper’s aim is to provide an end-to-end pipeline for 3D building modeling based on oblique UAS images only, the result being a parametrized 3D model with the Open Geospatial Consortium (OGC) CityGML standard, Level of Detail 2 (LOD2). For this purpose, a flight over an urban area of about 20.6 ha has been taken with a low-cost UAS, i.e., a DJI Phantom 4 Pro Professional (P4P), at 100 m height. The resulting UAS point cloud with the best scenario, i.e., 45 Ground Control Points (GCP), has been processed as follows: filtering to extract the ground points using two algorithms, CSF and terrain-mark; classification, using two methods, based on attributes only and a random forest machine learning algorithm; segmentation using local homogeneity implemented into Opals software; plane creation based on a region-growing algorithm; and plane editing and 3D model reconstruction based on piece-wise intersection of planar faces. The classification performed with ~35% training data and 31 attributes showed that the Visible-band difference vegetation index (VDVI) is a key attribute and 77% of the data was classified using only five attributes. The global accuracy for each modeled building through the workflow proposed in this study was around 0.15 m, so it can be concluded that the proposed pipeline is reliable

    Proposed Methodology for Accuracy Improvement of LOD1 3D Building Models Created Based on Stereo Pléiades Satellite Imagery

    No full text
    Three-dimensional city models play an important role for a large number of applications in urban environments, and thus it is of high interest to create them automatically, accurately and in a cost-effective manner. This paper presents a new methodology for point cloud accuracy improvement to generate terrain topographic models and 3D building modeling with the Open Geospatial Consortium (OGC) CityGML standard, level of detail 1 (LOD1), using very high-resolution (VHR) satellite images. In that context, a number of steps are given attention (which are often (in the literature) not considered in detail), including the local geoid and the role of the digital terrain model (DTM) in the dense image matching process. The quality of the resulting models is analyzed thoroughly. For this objective, two stereo Pléiades 1 satellite images over Iasi city were acquired in September 2016, and 142 points were measured in situ by global navigation satellite system real-time kinematic positioning (GNSS-RTK) technology. First, the quasigeoid surface resulting from EGG2008 regional gravimetric model was corrected based on data from GNSS and leveling measurements using a four-parameter transformation, and the ellipsoidal heights of the 142 GNSS-RTK points were corrected based on the local quasigeoid surface. The DTM of the study area was created based on low-resolution airborne laser scanner (LR ALS) point clouds that have been filtered using the robust filter algorithm and a mask for buildings, and the ellipsoidal heights were also corrected with the local quasigeoid surface, resulting in a standard deviation of 37.3 cm for 50 levelling points and 28.1 cm for the 142 GNSS-RTK points. For the point cloud generation, two scenarios were considered: (1) no DTM and ground control points (GCPs) with uncorrected ellipsoidal heights resulting in an RMS difference (Z) for the 64 GCPs and 78 ChPs of 69.8 cm and (2) with LR ALS-DTM and GCPs with corrected ellipsoidal height values resulting in an RMS difference (Z) of 60.9 cm. The LOD1 models of 1550 buildings from the Iasi city center were created based on Pléiades-DSM point clouds (corrected and not corrected) and existing building sub-footprints, with four methods for the derivation of the building roof elevations, resulting in a standard deviation of 1.6 m against high-resolution (HR) ALS point cloud in the case of the best scenario. The proposed method for height extraction and reconstruction of the city structure performed the best compared with other studies on multiple satellite stereo imagery

    Proposed Methodology for Accuracy Improvement of LOD1 3D Building Models Created Based on Stereo Pléiades Satellite Imagery

    No full text
    Three-dimensional city models play an important role for a large number of applications in urban environments, and thus it is of high interest to create them automatically, accurately and in a cost-effective manner. This paper presents a new methodology for point cloud accuracy improvement to generate terrain topographic models and 3D building modeling with the Open Geospatial Consortium (OGC) CityGML standard, level of detail 1 (LOD1), using very high-resolution (VHR) satellite images. In that context, a number of steps are given attention (which are often (in the literature) not considered in detail), including the local geoid and the role of the digital terrain model (DTM) in the dense image matching process. The quality of the resulting models is analyzed thoroughly. For this objective, two stereo Pléiades 1 satellite images over Iasi city were acquired in September 2016, and 142 points were measured in situ by global navigation satellite system real-time kinematic positioning (GNSS-RTK) technology. First, the quasigeoid surface resulting from EGG2008 regional gravimetric model was corrected based on data from GNSS and leveling measurements using a four-parameter transformation, and the ellipsoidal heights of the 142 GNSS-RTK points were corrected based on the local quasigeoid surface. The DTM of the study area was created based on low-resolution airborne laser scanner (LR ALS) point clouds that have been filtered using the robust filter algorithm and a mask for buildings, and the ellipsoidal heights were also corrected with the local quasigeoid surface, resulting in a standard deviation of 37.3 cm for 50 levelling points and 28.1 cm for the 142 GNSS-RTK points. For the point cloud generation, two scenarios were considered: (1) no DTM and ground control points (GCPs) with uncorrected ellipsoidal heights resulting in an RMS difference (Z) for the 64 GCPs and 78 ChPs of 69.8 cm and (2) with LR ALS-DTM and GCPs with corrected ellipsoidal height values resulting in an RMS difference (Z) of 60.9 cm. The LOD1 models of 1550 buildings from the Iasi city center were created based on Pléiades-DSM point clouds (corrected and not corrected) and existing building sub-footprints, with four methods for the derivation of the building roof elevations, resulting in a standard deviation of 1.6 m against high-resolution (HR) ALS point cloud in the case of the best scenario. The proposed method for height extraction and reconstruction of the city structure performed the best compared with other studies on multiple satellite stereo imagery

    Forest Fire Risk Zone Mapping of Eravikulam National Park in India: A Comparison Between Frequency Ratio and Analytic Hierarchy Process Methods

    Get PDF
    Forest fire is one of the most common natural hazards occurring in the Western Ghats region of Kerala and is one of the reasons for forest degradation. This natural disaster causes considerable damage to the biodiversity of this region during the dry fire season. The area selected for the present study, Eravikulam National Park, which is predominantly of grassland vegetation, is also prone to forest fires. This study aims to delineate the forest fire risk zones in Eravikulam National Park using remote sensing (RS) data and geographic information system (GIS) techniques. In the present study, methods such as Analytic Hierarchy Process (AHP) and Frequency Ratio (FR) were used to derive the weights, and the results were compared. We have used seven factors, i.e. land cover types, normalized difference vegetation index, normalized difference water index, slope angle, slope aspect, distance from the settlement, and distance from the road to prepare the fire risk zone map. The area of the prepared risk zone maps is divided into three zones, namely low, moderate, and high. From the study, it was found that the fire occurring in this area is due to natural as well as anthropogenic factors. The prepared forest fire risk zone maps are validated using the fire incidence data for the period from January 2003 to June 2019 collected from the records of the Forest Survey of India. The investigation revealed that 72% and 24% of the fire incidences occurred in the high risk zone of the maps prepared using the AHP and FR methods, respectively, which ascertained the superiority of the AHP method over the FR method for forest fire risk zone mapping. The receiver operating characteristic (ROC) curve analysis gives an area under the ROC curve (AUC) value of 0.767 and 0.567 for the AHP and FR methods, respectively. The risk zone maps will be useful for staff of the forest department, planners, and officials of the disaster management department to take effective preventive and mitigation measures
    corecore