12 research outputs found

    The Phospholipid Molecular Species Profile of Apostichopus japonicus Tissues Modifies through Exposure to n-3 Polyunsaturated Fatty Acid-Deficient Diet

    No full text
    The sea cucumber Apostichopus japonicus, being a target species of commercial fisheries and aquaculture, is also used as a source of biologically active compounds with high pharmacological potential. By the methods of high-performance liquid chromatography with high resolution mass spectrometry, we analyzed the major structural phospholipids (PL)—glycerophosphoethanolamines (PE), glycerophosphocholines (PC), glycerophosphoserines (PS), and glycerophosphoinositols (PI)—in tissues of wild and cultured sea cucumbers. The intestines of the wild and cultured animals differed from the other tissues by an elevated content of molecular species of PE, PC, and PS with 22:6n-3 fatty acid. The respiratory trees of the studied animals contained a high level of odd-chain PI and PI with 20:4n-6. The exposure to n-3 PUFA-deficient diet resulted in substantial changes in the molecular species profile of PL of the wild and cultured animals. The cultured sea cucumbers showed a significant decrease in the 20:5n-3 content in all four studied PL classes. A replacement of 20:5n-3 by 20:4n-6 occurred in PE, PC, and PI. The decrease in the level of molecular species of PS with 20:5n-3 was compensated by an increase in the level of monounsaturated long-chain PS. The diet of cultured sea cucumbers is a crucial factor for enhancing the nutritional properties of the product obtained from them

    Stilbene Content and Expression of Stilbene Synthase Genes in Korean Pine <i>Pinus koraiensis</i> Siebold & Zucc

    No full text
    Stilbenes are a large group of plant phenolic compounds that have a wide range of biologically active properties, such as antioxidant, immunomodulatory, anti-inflammatory, and anti-angiogenic effects. In plants, stilbenes are involved in the defense against environmental stresses, including fungal infections and insect attacks. The biosynthesis of stilbenes is well described for those plant species where resveratrol and its derivatives are the predominant stilbenes. However, there is little information on stilbene biosynthesis in the Pinaceae family, although the highest content of stilbenes was found in plants of this family. In this study, seasonal variations in stilbene compositions and contents in different parts of Pinus koraiensis was described (needles, bark, wood, young branches, and strobiles). HPLC-ESI-MS analysis showed the presence of seven stilbenes in P. koraiensis: t-astringin; t-piceid; cis-piceid; t-isorapontin; t-pinostilbenoside; t-resveratrol; and t-pinostilbene. Glycosylated and methylated forms of stilbenes, such as t-astringin, t-piceid, and t-pinostilbenoside, prevailed over other stilbenoids. The highest content of stilbenes was detected in the bark collected in spring and winter (up to 54.8 mg/g dry weight). The complete protein-coding sequences of three stilbene synthase genes, PkSTS1, PkSTS2, and PkSTS3, were obtained from the RNA isolated from the P. koraiensis needles. The expression of the PkSTS1, PkSTS2, and PkSTS3 genes was analyzed using real-time PCR and frequency analysis of cloned RT-PCR products in the needles of P. koraiensis collected in different seasons. Thus, we first analyzed stilbene biosynthesis in the different organs of pine P. koraiensis and PkSTS expression depending on the year seasons

    The Different Composition of Coumarins and Antibacterial Activity of <i>Phlojodicarpus sibiricus</i> and <i>Phlojodicarpus villosus</i> Root Extracts

    No full text
    Phlojodicarpus sibiricus, a valuable endangered medicinal plant, is a source of angular pyranocoumarins used in pharmacology. Due to limited resource availability, other pyranocoumarin sources are needed. In the present research, the chemical composition of a closely related species, Phlojodicarpus villosus, was studied, along with P. sibiricus. High-performance liquid chromatography and mass-spectrometric analyses, followed by antibacterial activity studies of root extracts from both species, were performed. P. sibiricus and P. villosus differed significantly in coumarin composition. Pyranocoumarins predominated in P. sibiricus, while furanocoumarins predominated in P. villosus. Osthenol, the precursor of angular pyrano- and furanocoumarins, was detected in both P. sibiricus and P. villosus. Angular forms of coumarins were detected in both species according to the mass-spectrometric behavior of the reference. Thus, P. villosus cannot be an additional source of pyranocoumarins because their content in the plant is critically low. At the same time, the plant contained large amounts of hydroxycoumarins and furanocoumarins. The extracts exhibited moderate antibacterial activity against five standard strains. The P. villosus extract additionally suppressed the growth of the Gram-negative bacterium E. coli. Thus, both Phlojodicarpus species are promising for further investigation in the field of pharmaceuticals as producers of different coumarins

    Tempo-Spatial Pattern of Stepharine Accumulation in <i>Stephania Glabra</i> Morphogenic Tissues

    No full text
    Alkaloids attract great attention due to their valuable therapeutic properties. Stepharine, an aporphine alkaloid of Stephania glabra plants, exhibits anti-aging, anti-hypertensive, and anti-viral effects. The distribution of aporphine alkaloids in cell cultures, as well as whole plants is unknown, which hampers the development of bioengineering strategies toward enhancing their production. The spatial distribution of stepharine in cell culture models, plantlets, and mature micropropagated plants was investigated at the cellular and organ levels. Stepharine biosynthesis was found to be highly spatially and temporally regulated during plant development. We proposed that self-intoxication is the most likely reason for the failure of the induction of alkaloid biosynthesis in cell cultures. During somatic embryo development, the toxic load of alkaloids inside the cells increased. Only specialized cell sites such as vascular tissues with companion cells (VT cells), laticifers, and parenchymal cells with inclusions (PI cells) can tolerate the accumulation of alkaloids, and thus circumvent this restriction. S. glabra plants have adapted to toxic pressure by forming an additional transport secretory (laticifer) system and depository PI cells. Postembryonic growth restricts specialized cell site formation during organ development. Future bioengineering strategies should include cultures enriched in the specific cells identified in this study

    Callus Culture of Scorzonera radiata as a New, Highly Productive and Stable Source of Caffeoylquinic Acids

    No full text
    During our ongoing efforts to investigate biotechnological sources of caffeoylquinic acid (CQA) metabolites, we discovered the plant Scorzonera radiata Fisch. (Asteraceae), which is able to produce callus cultures with high yield and extremely high stability. An actively growing callus line, designated as Sr-L1, retained the ability to produce 11 CQAs during long-term cultivation (more than 20 years). A total of 29 polyphenolic compounds were identified in the leaves and Sr-L1 callus culture of S. radiata, including CQAs, lignol derivatives, flavonoids, and dihydrostilbenes. The composition of CQAs in the Sr-L1 culture was identical to that in the S. radiata leaves. Sr-L1 calli did not produce flavonoids and dihydrostilbenes, but produced lignol derivatives, which were absent in leaves. The HPLC-UV-HRMS determination showed the presence of monoacyl derivatives of CQAs such as 5-CQA, 4-CQA, cis-5-CQA, and 5-O-p-coumaroylquinic acid in the Sr-L1 culture. Among diacyl derivatives, 3,4-diCQA, 3,5-diCQA, cis-3,5-diCQA, 4,5-diCQA, 3-O-p-coumaroyl-5-O-CQA, and 3-O-caffeoyl-5-O-p-coumaroylquinic acid were found. The content of 5-CQA reached 7.54 mg/g dry weight and the content of 3,5-diCQA was as high as 18.52 mg/g dry weight. 3,5-diCQA has been reported to be of high nutritional and pharmacological value, as it alleviates inflammatory pain, reverses memory impairment by preventing neuronal apoptosis, and counteracts excessive adipose tissue expansion, serving as an attractive treatment option for obesity. The high content of 3,5-diCQA and the exceptional stability of biosynthesis make callus cultures of S. radiata a promising source for the development of drugs and nutraceuticals

    Current Progress in Lipidomics of Marine Invertebrates

    No full text
    Marine invertebrates are a paraphyletic group that comprises more than 90% of all marine animal species. Lipids form the structural basis of cell membranes, are utilized as an energy reserve by all marine invertebrates, and are, therefore, considered important indicators of their ecology and biochemistry. The nutritional value of commercial invertebrates directly depends on their lipid composition. The lipid classes and fatty acids of marine invertebrates have been studied in detail, but data on their lipidomes (the profiles of all lipid molecules) remain very limited. To date, lipidomes or their parts are known only for a few species of mollusks, coral polyps, ascidians, jellyfish, sea anemones, sponges, sea stars, sea urchins, sea cucumbers, crabs, copepods, shrimp, and squid. This paper reviews various features of the lipid molecular species of these animals. The results of the application of the lipidomic approach in ecology, embryology, physiology, lipid biosynthesis, and in studies on the nutritional value of marine invertebrates are also discussed. The possible applications of lipidomics in the study of marine invertebrates are considered

    ABA-Dependent Regulation of Calcium-Dependent Protein Kinase Gene GmCDPK5 in Cultivated and Wild Soybeans

    No full text
    Calcium-dependent protein kinases (CDPKs) regulate plant development and stress responses. However, the interaction of these protein kinases with the abscisic acid (ABA) stress hormone signalling system has not been studied in detail. In Arabidopsis, AtCPK1 plays an important role in the acclimation of plants to environmental stresses. Phylogenetic and molecular analyses showed that, among 50 isoforms of Glycine max (L.) Merrill CDPKs, the GmCDPK27/GmCDPK48, GmCDPK5/GmCDPK24, and GmCDPK10/GmCDPK46 paralogous pairs were the isoforms most related to AtCDPK1. We investigated the expression of the corresponding six GmCDPKs genes during treatment with cold, heat, and salt stress. Wild soybean was the most resistant to stresses, and among the three cultivars studied (Sfera, Hodgson, and Hefeng25), Sfera was close to the wild type in terms of resistance. GmCDPK5 and GmCDPK10 were the most responsive to stress treatments, especially in wild soybean, compared with cultivars. Among the studied GmCDPK isoforms, only GmCDPK5 expression increased after treatment with abscisic acid (ABA) in a dose- and time-dependent manner. Targeted LC-MS/MS analysis of endogenous ABA levels showed that wild soybean and Sfera had nearly twice the ABA content of Hodgson and Hefeng25. An analysis of the expression of marker genes involved in ABA biosynthesis showed that GmNCED1-gene-encoding 9-cis-epoxycarotenoid dioxygenase 1 is induced to the greatest extent in wild soybean and Sfera under salt, cold, and heat exposure. Our data established a correlation between the induction of GmCDPK5 and ABA biosynthesis genes. GmCDPK5 is an interesting target for genetic and bioengineering purposes and can be used for genetic editing, overexpression, or as a marker gene in soybean varieties growing under unfavourable conditions

    Polyphenolic Compounds from <i>Lespedeza bicolor</i> Protect Neuronal Cells from Oxidative Stress

    No full text
    Pterocarpans and related polyphenolics are known as promising neuroprotective agents. We used models of rotenone-, paraquat-, and 6-hydroxydopamine-induced neurotoxicity to study the neuroprotective activity of polyphenolic compounds from Lespedeza bicolor and their effects on mitochondrial membrane potential. We isolated 11 polyphenolic compounds: a novel coumestan lespebicoumestan A (10) and a novel stilbenoid 5’-isoprenylbicoloketon (11) as well as three previously known pterocarpans, two pterocarpens, one coumestan, one stilbenoid, and a dimeric flavonoid. Pterocarpans 3 and 6, stilbenoid 5, and dimeric flavonoid 8 significantly increased the percentage of living cells after treatment with paraquat (PQ), but only pterocarpan 6 slightly decreased the ROS level in PQ-treated cells. Pterocarpan 3 and stilbenoid 5 were shown to effectively increase mitochondrial membrane potential in PQ-treated cells. We showed that pterocarpans 2 and 3, containing a 3’-methyl-3’-isohexenylpyran ring; pterocarpens 4 and 9, with a double bond between C-6a and C-11a; and coumestan 10 significantly increased the percentage of living cells by decreasing ROS levels in 6-OHDA-treated cells, which is in accordance with their rather high activity in DPPH• and FRAP tests. Compounds 9 and 10 effectively increased the percentage of living cells after treatment with rotenone but did not significantly decrease ROS levels

    Growth of Micropropagated Solanum tuberosum L. Plantlets under Artificial Solar Spectrum and Different Mono- and Polychromatic LED Lights

    No full text
    In agriculture, LED light sources have increasingly replaced the standard luminescent lamps and have acquired an important role in plant micropropagation. We studied the effect of different light sources such as narrow-band LEDs (bright blue, blue, green, yellow, deep red, and red) and wide-band LEDs (cold white, white, warm white, full spectrum, and an artificial solar spectrum sun box constructed by us) on development of potato plantlets in vitro. White luminescent lamps were used as a control. The light intensity of 49 µmol · m−2 · s−1 was provided in all light treatments. We showed that the long-wave narrow-band light treatments were inapplicable for potato micropropagation, because plantlets were weak with small leaves, inhibited roots, and significantly elongated stems. Blue lights provided growth of shortened plantlets with large leaves, well-growing roots, and abundant green mass. The chlorophyll content was lower under blue and bright blue light and was at the same level in the remained treatments. Significant differences in the stomatal apparatus development were observed depending on the light source. These differences were not always reflected in the plantlet phenotype: e.g., plantlets under blue and bright blue lights showed no differences in any characteristics except stomatal density and size of stomatal guard cells. We found no significant effect of blue light portion in the white lights and full spectrum on plantlet growth. An artificial solar spectrum sun box was the most suitable for potato micropropagation, because it supported the development of plantlets with good fitness, uniform internodes length, abundant roots and green mass accumulation

    Effect of Stress Signals and <i>Ib-rolB/C</i> Overexpression on Secondary Metabolite Biosynthesis in Cell Cultures of <i>Ipomoea batatas</i>

    No full text
    Ipomoea batatas is a vital root crop and a source of caffeoylquinic acid derivatives (CQAs) with potential health-promoting benefits. As a naturally transgenic plant, I. batatas contains cellular T-DNA (cT-DNA) sequence homologs of the Agrobacterium rhizogenes open reading frame (ORF)14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n of unknown function. This study aimed to evaluate the effect of abiotic stresses (temperature, ultraviolet, and light) and chemical elicitors (methyl jasmonate, salicylic acid, and sodium nitroprusside) on the biosynthesis of CQAs and cT-DNA gene expression in I. batatas cell culture as a model system. Among all the applied treatments, ultraviolet irradiation, methyl jasmonate, and salicylic acid caused the maximal accumulation of secondary compounds. We also discovered that I. batatas cT-DNA genes were not expressed in cell culture, and the studied conditions weakly affected their transcriptional levels. However, the Ib-rolB/C gene expressed under the strong 35S CaMV promoter increased the CQAs content by 1.5–1.9-fold. Overall, our results show that cT-DNA-encoded transgenes are not involved in stress- and chemical elicitor-induced CQAs accumulation in cell cultures of I. batatas. Nevertheless, overaccumulation of RolB/RolC transcripts potentiates the secondary metabolism of sweet potatoes through a currently unknown mechanism. Our study provides new insights into the molecular mechanisms linked with CQAs biosynthesis in cell culture of naturally transgenic food crops, i.e., sweet potato
    corecore