42 research outputs found

    Integrated Germanium-on-silicon Waveguides for Mid-infrared Photonic Sensing Chips

    Get PDF
    Germanium-on-silicon waveguides are designed, fabricated and characterized with a novel near-field infrared spectroscopy technique that allows on-chip investigation of the in-coupling efficiency. On-chip propagation along bends and straight sections up to 0.8 mm is demonstrated around λ = 6 μm

    Benchmarking the Use of Heavily-Doped Ge Against Noble Metals for Plasmonics and Sensing in the Mid-Infrared

    Get PDF
    Despite the recent introduction of heavily-doped semiconductors for mid-infrared plasmonics, it still remains an open point whether such materials can compete with noble metals. We employ a whole set of figures of merit to thoroughly assess the use of heavily-doped Ge on Si as a mid-infrared plasmonic material and benchmark it against standard noble metals such as Au. In doing this, we design and model high-performance, CMOS compatible mid-infrared plasmonic sensors based on experimental material data reaching plasma frequencies up to about 1950 cm−1. We demonstrate that plasmonic Ge sensors can provide signal enhancements for vibrational spectroscopy above 3 orders of magnitude, thus representing a viable alternative to noble metals

    Germanium-on-silicon Waveguides for Mid-infrared Photonic Sensing Chips

    Get PDF
    Germanium-on-silicon rib waveguides are modelled, fabricated and characterized with a novel near-field infrared spectroscopy technique that allows on-chip investigation of the waveguide losses at 5.8 μm wavelength

    Group-IV midinfrared plasmonics

    Get PDF
    The use of heavily doped semiconductors to achieve plasma frequencies in the mid-IR has been recently proposed as a promising way to obtain high-quality and tunable plasmonic materials. We introduce a plasmonic platform based on epitaxial n-type Ge grown on standard Si wafers by means of low-energy plasma-enhanced chemical vapor deposition. Due to the large carrier concentration achieved with P dopants and to the compatibility with the existing CMOS technology, SiGe plasmonics hold promises for mid-IR applications in optoelectronics, IR detection, sensing, and light harvesting. As a representative example, we show simulations of mid-IR plasmonic waveguides based on the experimentally retrieved dielectric constants of the grown materials

    When Rey-Osterrieth's Complex Figure Becomes a Church: Prevalence and Correlates of Graphic Confabulations in Dementia

    Get PDF
    Verbal confabulation (VC) has been described in several pathological conditions characterized by amnesia and has been defined as ‘statements that involve distortion of memories’. Here we describe another kind of confabulation (graphic confabulation, GC), evident at the recall of the Rey-Osterrieth complex figure (ROCF). In a retrospective study of 267 patients with mild-to-moderate dementia, 14 patients (4.9 %) recalled the abstract ROCF as drawings with recognizable semantic meaning. VC was evident at the story recall test in 19.8% of the study participants. VC and GC were homogeneously distributed among the different types of dementia. VC has been proposed to originate from complex interactions of amnesia, motivational deficit and dysfunction of monitoring systems. On the contrary, GC seems to be the result of a deficit in visual memory replaced by the semantic translation of isolated parts of the ROCF along with a source monitoring deficit

    Mid-infrared n-Ge on Si Plasmonic Based Microbolometer Sensors

    Get PDF
    The detection and amplification of molecular absorption lines from a chemical weapons simulant is demonstrated using plasmonic antennas fabricated from n-Ge epitaxially grown on Si. A free-standing Si0.25Ge0.75 microbolometer detector with n-Ge plasmonic antenna is demonstrated as an integrated mid-infrared plasmonic sensor

    Heavily-doped Germanium on Silicon with Activated Doping Exceeding 1020 cm−3 as an Alternative to Gold for Mid-infrared Plasmonics

    Get PDF
    Ge-on-Si has been demonstrated as a platform for Si foundry compatible plasmonics. We use laser thermal annealing to demonstrate activated doping levels >1020 cm-3 which allows most of the 3 to 20 μm mid-infrared sensing window to be covered with enhancements comparable to gold plasmonics

    The use of silicon-germanium superlattices for thermoelectric devices and microfabricated generators

    Get PDF
    Low dimensional structures such as superlattices have the potential to improve the thermoelectric properties of materials by engineering the scattering of phonons to reduce the thermal conductivity and therefore improve the thermeoelectric performance. Here we demonstrate the reduction in thermal conductivity in Ge/SiGe superlattices using multiple barrier engineering to scatter acoustic phonons at the key wavelengths for thermal transport. The approach allows ZT to be increased in wide quantum well superlattices through the reduction of heterointerfaces which scatter both electrons and phonons

    n-Ge on Si for Mid-Infrared Plasmonic Sensors

    Get PDF
    The detection and amplification of molecular absorption lines from a mustard gas simulant is demonstrated using plasmonic antennas fabricated from n-Ge epitaxially grown on Si. Approaches to integrated sensors will be presented along with a review of n-Ge compared to other mid-infrared plasmonic materials

    Benchmarking the use of heavily-doped Ge for plasmonics and sensing in the mid-infrared

    Get PDF
    Despite the recent introduction of heavily-doped semiconductors for mid-infrared plasmonics, it still remains an open issue whether such materials can compete with noble metals. A whole set of figures of merit is employed to thoroughly assess the use of heavily-doped Ge on Si as a mid-infrared plasmonic material and benchmark it against standard noble metals such as Au. A full-wave electrodynamics framework is used to model and design high-performance, silicon foundry compatible mid-infrared plasmonic sensors based on experimental material data reaching plasma wavelengths down to λp ~ 3.1 μm. It is finally shown that Ge sensors can provide signal enhancements for vibrational spectroscopy above the 3 orders of magnitude, thus representing a promising alternative to noble metals, leveraging the full compatibility with the silicon foundry microfabrication processes
    corecore