204 research outputs found

    An overview of the effects of thermal processing on bioactive glasses

    Get PDF
    Bioglass® 45S5 is widely used in biomedical applications due to its ability to bond to bone and even to soft tissues. The sintering ability of Bioglass® powders is a key factor from a technological point of view, since its govern the production of advanced devices, ranging from highly porous scaffolds to functionalized coatings. Unfortunately this particular glass composition is prone to crystallize at the temperature required for sintering and this may impair the bioactivity of the original glass. For these reasons, a prerequisite to tailor the fabrication of Bioglass®-derived implants is to understand the interaction between sintering, crystallization and bioactivity. In this work the structural transformations which occur during the heat treatment of Bioglass® are reviewed and a special attention is paid to the sintering and crystallization processes. Moreover the bioactivity of the final glass-ceramics is discussed and some alternative glass formulations are reported

    A comparative in vivo evaluation of bioactive glasses and bioactive glass-based composites for bone tissue repair

    Get PDF
    In this work a set of novel materials for bone tissue regeneration have been tested in vivo in an animal model. In fact, despite many studies have been devoted to amorphous 45S5 Bioglass®, there is lack in the literature of works aimed to study the in vivo performance of heat-treated – and thus partially crystallized – 45S5. As widely reported, crystallization limits the bioactivity of 45S5 and is the main reason that prevents a broader use of this material. Thus, in the present work, a recently developed bioactive glass (BG_Ca/Mix) is tested, since previous investigations demonstrated that BG_Ca/Mix is particularly promising by virtue of both its high bioactivity and lower tendency to crystallize with respect to 45S5. BG_Ca/Mix sintered powders and two composites, which contain BG_Ca/Mix and an increasing percentage (20 wt% or 70 wt%) of hydroxyapatite (HA), were considered. As a term of comparison, 45S5 sintered powders were also studied. The samples were implanted in rabbits' femurs and harvested after 8 weeks. The histological analysis demonstrated that BG_Ca/Mix has an osteoconductive ability slightly higher than that of 45S5 glass-ceramics, followed by that of the composites, which may represent the starting point for obtaining systems with degradation rate tailored for a given clinical application. Moreover, the 45S5 samples were locally cracked, probably because of a non-uniform dissolution in the physiological environment. On the contrary such cracks, which could lead to implant instability and unsuitable mechanical performance, were not observed in BG_Ca/Mix

    Sol-gel derived bioactive glasses with low tendency to crystallize: synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds.

    Get PDF
    A new sol-gel (SG) method is proposed to produce special bioactive glasses (BG_Ca family) characterized by a low tendency to devitrify. These formulations, derived from 45S5 Bioglass®, are characterized by a high content of CaO (45.6 mol%) and by a partial or complete substitution of sodium oxide with potassium oxide (total amount of alkaline oxides: 4.6 mol%), which increases the crystallization temperature up to 900°C. In this way, it is possible to produce them by SG preserving their amorphous nature, in spite of the calcination at 850°C. The sintering behavior of the obtained SG powders is thoroughly investigated and the properties of the sintered bodies are compared to those of the melt-derived (M) counterparts. Furthermore, the SG glass powders are successfully used to produce scaffolds by means of a modified replication technique based on the combined use of polyurethane sponges and polyethylene particles. Finally, in the view of a potential application for bone tissue engineering, the cytotoxicity of the produced materials is evaluated in vitro

    Load bearing capability of three-units 4Y-TZP monolithic fixed dental prostheses: An innovative model for reliable testing

    Get PDF
    In this work, three-units monolithic fixed dental prostheses (FDPs) have been analysed and a novel model for reliable testing has been proposed. Such model is based on a new design of the polymeric base of the FDP, realised via additive manufacturing (AM) - a solution that conveys at the same time quick manufacturability, low cost, custom-ability, and design freedom. By means of this new model, the load-bearing capability of three-units monolithic FDPs has been thoroughly tested; in particular, three different analyses were performed: (i) analytical with a beam-like model, (ii) numerical, using non-linear three-dimensional Finite Elements (FE) models and (iii) experimental, by static bending test. The FDPs considered in this work were manufactured using a fourth-generation zirconia, namely 4Y-TZP. The findings demonstrated the undoubted advantages of the new base configuration, which minimized the effect of the base (which as a matter of fact is absent in in-vivo conditions) on the stress state of the connectors in the FDPs, and increased the repeatability and reliability of the experimental bending tests, able to determine the load bearing capability of the 4Y-TZP FDPs

    Processing and characterisation of High-Velocity Suspension Flame Sprayed (HVSFS) bioactive glass coatings

    Get PDF
    The High-Velocity Suspension Flame Spraying (HVSFS) technique was employed in order to deposit bioactive glass coatings onto titanium substrates. Two different glass compositions were examined: the classical 45S5 Bioglass and a newly-developed SiO2–CaO–K2O–P2O5 glass, labelled as “Bio-K”. Suitable raw materials were melted in a furnace and fritted by casting into water. The frit was dry-milled in a porcelain jar and subsequently attrition-milled in isopropanol. The resulting micron- sized powders were dispersed in a water+isopropanol mixture, in order to prepare suitable suspensions for the HVSFS process. The deposition parameters were varied; however, all coatings were obtained by performing three consecutive torch cycles in front of the substrate. The thickness and porosity of the coatings were significantly affected by the chosen set of deposition parameters; however, in all cases, the layer produced during the third torch cycle was thicker and denser than the one produced during the first cycle. As the system temperature increases during the spraying process, the particles sprayed during the last torch cycle remain at T > Tg while they spread, so that interlamellar viscous flow sintering takes place, favouring the formation of such denser microstructure. Both coatings are entirely glassy; however, micro-Raman spectroscopy reveals that, whereas the 45S5 coating is structurally identical to the corresponding bulk glass, the “Bio-K” coating is somewhat different from the bulk one

    Effect of the suspension composition on the microstructural properties of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings

    Get PDF
    Seven different Al2O3-based suspensions were prepared by dispersing two nano-sized Al2O3 powders (having analogous size distribution and chemical composition but different surface chemistry), one micron-sized powder and their mixtures in a water+isopropanol solution. High velocity suspension flame sprayed (HVSFS) coatings were deposited using these suspensions as feedstock and adopting two different sets of spray parameters. The characteristics of the suspension, particularly its agglomeration behaviour, have a significant influence on the coating deposition mechanism and, hence, on its properties (microstructure, hardness, elastic modulus). Dense and very smooth (Ra ~ 1.3 ÎĽm) coatings, consisting of well- flattened lamellae having a homogeneous size distribution, are obtained when micron-sized (~1 -2 ÎĽm) powders with low tendency to agglomeration are employed. Spray parameters favouring the break-up of the few agglomerates present in the suspension enhance the deposition efficiency (up to >50%), as no particle or agglomerate larger than ~2.5 ÎĽm can be fully melted. Nano-sized powders, by contrast, generally form stronger agglomerates, which cannot be significantly disrupted by adjusting the spray parameters. If the chosen nanopowder forms small agglomerates (up to few microns), the deposition efficiency is satisfactory and the coating porosity is limited, although the lamellae generally have a wider size distribution, so that roughness is somewhat higher. If the nanopowder forms large agglomerates (on account of its surfacechemistry), poor deposition efficiencies and porous layers are obtained. Although suspensions containing the pure micron-sized powder produce the densest coatings, the highest deposition efficiency (~70%) is obtained by suitable mixtures of micron-and nano-sized powders, on account of synergistic effect

    Bone regeneration by novel bioactive glasses containing strontium and/or magnesium: A preliminary in-vivo study

    Get PDF
    In this work, a set of novel bioactive glasses have been tested in vivo in an animal model. The new compositions, characterized by an exceptional thermal stability and high in vitro bioactivity, contain strontium and/or magnesium, whose biological benefits are well documented in the literature. To simulate a long-term implant and to study the effect of the complete dissolution of glasses, samples were implanted in the mid-shaft of rabbits' femur and analyzed 60 days after the surgery; such samples were in undersized powder form. The statistical significance with respect to the type of bioactive glass was analyzed by Kruskal-Wallis test. The results show high levels of bone remodeling, several new bone formations containing granules of calcium phosphate (sometimes with amounts of strontium and/or magnesium), and the absence of adverse effects on bone processes due to the almost complete glass dissolution. In vivo results confirming the cell culture outcomes of a previous study highlighted that these novel bioglasses had osteostimulative effect without adverse skeletal reaction, thus indicating possible beneficial effects on bone formation processes. The presence of strontium in the glasses seems to be particularly interesting
    • …
    corecore