6 research outputs found

    Uncovering the diversity of endemic Ethiopian fauna: complete mitochondrial genomes of four Lophuromys species (Rodentia, Muridae)

    No full text
    Complete mitochondrial genomes of four species of Ethiopian speckled brush-furred rats Lophuromys (L. chrysopus, L. menageshae, L. melanonyx, and L. simensis) were assembled for the first time. We provide data concerning the sequencing, assembly, and annotation of the obtained mitogenomes; compare two widely used circular-genome annotation tools (MITOS and MitoZ), and discuss relevant points concerning relationships within both Ethiopian Lophuromys and the Muridae family

    Conformational features of lactate dehydrogenase: Temperature effect in presence of small molecules, mathematical model

    No full text
    The aim. To study the conformational changes of lactate dehydrogenase under the influence of different concentrations of intermediates (pyruvate, oxaloacetate) in the temperature gradient with the subsequent building of a mathematical model. Materials and methods. Thermolability of lactate dehydrogenase was studied using the method of differential scanning fluorimetry to determine the change in endogenous fluorescence of tryptophan and tyrosine under the conditions of stable concentration of lactate dehydrogenase and changing concentrations of pyruvate and oxaloacetate. Further, a mathematical model was developed for a more in-depth consideration of the behavior of the catalytic protein. Results. We found that pyruvate and oxaloacetate in low concentrations have a thermostabilizing effect on lactate dehydrogenase conformation; the effect of pyruvate is statistically more significant in comparison with oxaloacetate (p < 0.05). The studied ligands in high concentrations reduce the thermal stability of lactate dehydrogenase. Conclusion. Understanding the role of small molecules in the regulation of biological and catalytic processes has long remained in the background of scientific interest, but today the work in this direction is reaching a new level. The data obtained indicate the possibility of small molecules acting as ligands when interacting with enzymes. © 2020 Siberian State Medical University. All rights reserved

    Calcium Phosphate Coating Prepared by Microarc Oxidation Affects hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor-Derived Jurkat T Cells

    No full text
    Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 &times; 10 &times; 1 mm3) with a bilateral rough (average roughness index (Ra) = 2&ndash;5 &mu;m) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150&ndash;300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3&ndash;0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and &beta;-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5&ndash;2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2&ndash;14 days) 1.5&ndash;6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies

    Zn- or Cu-containing CaP-Based Coatings Formed by Micro-Arc Oxidation on Titanium and Ti-40Nb Alloy: Part II—Wettability and Biological Performance

    No full text
    This work describes the wettability and biological performance of Zn- and Cu-containing CaP-based coatings prepared by micro-arc oxidation on pure titanium (Ti) and novel Ti-40Nb alloy. Good hydrophilic properties of all the coatings were demonstrated by the low contact angles with liquids, not exceeding 45&deg;. An increase in the applied voltage led to an increase of the coating roughness and porosity, thereby reducing the contact angles to 6&deg; with water and to 17&deg; with glycerol. The free surface energy of 75 &plusmn; 3 mJ/m2 for all the coatings were determined. Polar component was calculated as the main component of surface energy, caused by the presence of strong polar PO43&minus; and OH&minus; bonds. In vitro studies showed that low Cu and Zn amounts (~0.4 at.%) in the coatings promoted high motility of human adipose-derived multipotent mesenchymal stromal cells (hAMMSC) on the implant/cell interface and subsequent cell ability to differentiate into osteoblasts. In vivo study demonstrated 100% ectopic bone formation only on the surface of the CaP coating on Ti. The Zn- and Cu-containing CaP coatings on both substrates and the CaP coating on the Ti-40Nb alloy slightly decreased the incidence of ectopic osteogenesis down to 67%. The MAO coatings showed antibacterial efficacy against Staphylococcus aureus and can be arranged as follows: Zn-CaP/Ti &gt; Cu-CaP/TiNb, Zn-CaP/TiNb &gt; Cu-CaP/Ti
    corecore