9 research outputs found

    UV-light-driven prebiotic synthesis of iron–sulfur clusters

    Get PDF
    Iron–sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron–sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron–sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe–2S] and [4Fe–4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron–sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron–sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron–sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron–sulfur-cluster-dependent metabolism

    Methods to identify and characterize iron-sulfur oligopeptides in water

    Full text link
    Iron-sulfur clusters are ubiquitous cofactors that mediate central biological processes. However, despite their long history, these metallocofactors remain challenging to investigate when coordinated to small (≀ six amino acids) oligopeptides in aqueous solution. In addition to being often unstable in vitro, iron-sulfur clusters can be found in a wide variety of forms with varied characteristics, which makes it difficult to easily discern what is in solution. This difficulty is compounded by the dynamics of iron-sulfur peptides, which frequently coordinate multiple types of clusters simultaneously. To aid investigations of such complex samples, a summary of data from multiple techniques used to characterize both iron-sulfur proteins and peptides is provided. Although not all spectroscopic techniques are equally insightful, it is possible to use several, readily available methods to gain insight into the complex composition of aqueous solutions of iron-sulfur peptides.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    UV-light-driven prebiotic synthesis of iron–sulfur clusters

    Full text link
    Iron–sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron–sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron–sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe–2S] and [4Fe–4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron–sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron–sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron–sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron–sulfur-cluster-dependent metabolism

    Therapeutic drug monitoring and the inhibitory quotient of antiretroviral drugs: can they be applied to the current situation?

    Full text link

    Monitorización terapéutica y cociente inhibitorio de los fårmacos antirretrovirales: ¿son aplicables a nuestra realidad?

    Full text link

    British HIV Association (BHIVA) guidelines for the treatment of HIV-infected adults with antiretroviral therapy (2005)

    Full text link
    corecore