800 research outputs found
Wetting Behavior of Ternary Au-Ge-X (X=Sb, Sn) Alloys on Cu and Ni
Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X=Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solde
Effectiveness of sodium acetate treatment on the mechanical properties and morphology of natural fiber-reinforced composites
This paper aims to investigate the ability of an eco-friendly and cheap treatment based on sodium acetate solutions to improve the mechanical properties of flax fiber-reinforced composites. Flax fibers were treated for 5 days (i.e., 120 h) at 25â—¦C with mildly alkaline solutions at 5%, 10% and 20% weight content of the sodium salt. Quasi-static tensile and flexural tests, Charpy impact tests and dynamical mechanical thermal (DMTA) tests were carried out to evaluate the mechanical properties of the resulting composites. Fourier transform infrared analysis (FTIR) was used to evaluate the chemical modification on the fibers surface due to the proposed treatment, whereas scanning electron microscope (SEM) and helium pycnometry were used to get useful information about the morphology of composites. It was found that the treatment with 5% solution of sodium acetate leads to the best mechanical performance and morphology of flax fiber-reinforced composites. SEM analysis confirmed these findings highlighting that composites reinforced with flax fibers treated in 5% sodium acetate solution show an improved morphology compared to the untreated ones. On the contrary, detrimental effects on the morphology as well as on the mechanical performance of composites were achieved by increasing the salt concentration of the treating solution
Physiological Noise: Definition, Estimation, and Characterization in Complex Biomedical Signals
Background: Nonlinear physiological systems exhibit complex dynamics driven by intrinsic dynamical noise. In cases where there is no specific knowledge or assumption about system dynamics, such as in physiological systems, it is not possible to formally estimate noise. Aim: We introduce a formal method to estimate the power of dynamical noise, referred to as physiological noise, in a closed form, without specific knowledge of the system dynamics. Methodology: Assuming that noise can be modeled as a sequence of independent, identically distributed (IID) random variables on a probability space, we demonstrate that physiological noise can be estimated through a nonlinear entropy profile. We estimated noise from synthetic maps that included autoregressive, logistic, and Pomeau-Manneville systems under various conditions. Noise estimation is performed on 70 heart rate variability series from healthy and pathological subjects, and 32 electroencephalographic (EEG) healthy series. Results: Our results showed that the proposed model-free method can discern different noise levels without any prior knowledge of the system dynamics. Physiological noise accounts for around 11% of the overall power observed in EEG signals and approximately 32% to 65% of the power related to heartbeat dynamics. Cardiovascular noise increases in pathological conditions compared to healthy dynamics, and cortical brain noise increases during mental arithmetic computations over the prefrontal and occipital regions. Brain noise is differently distributed across cortical regions. Conclusion: Physiological noise is very part neurobiological dynamics and can be measured using the proposed framework in any biomedical series
Online and offline security policy assessment
Network architectures and applications are becoming increasingly complex. Several approaches to automatically enforce configurations on devices, applications and services have been proposed, such as Policy-Based Network Management (PBNM). However, the management of enforced configurations in production environments (e.g. data center) is a crucial and complex task. For example, updates on firewall configuration to change a set of rules. Although this task is fundamental for complex systems, few effective solutions have been proposed for monitoring and managing enforced configurations. This work proposes a novel approach to monitor and manage enforced configurations in production environments. The main contributions of this paper are a formal model to identify/generate traffic flows and to verify the enforced configurations, and a slim and transparent framework to perform the policy assessment. We have implemented and validated our approach in a virtual environment in order to evaluate different scenarios. The results demonstrate that the prototype is effective and has good performance, therefore our model can be effectively used to analyse several types of IT infrastructures. A further interesting result is that our approach is complementary to PBNM
Towards a Framework for Automatic Firewalls Configuration via Argumentation Reasoning
Firewalls have been widely used to protect not only small and local networks but also large enterprise networks. The configuration of firewalls is mainly done by network administrators, thus, it suffers from human errors. This paper aims to solve the network administrators' problem by introducing a formal approach that helps to configure centralized and distributed firewalls and automatically generate conflict-free firewall rules. We propose a novel framework, called ArgoFiCo, which is based on argumentation reasoning. Our framework automatically populates the firewalls of a network, given the network topology and the high-level requirements that represent how the network should behave. ArgoFiCo provides two strategies for firewall rules distribution
Ab initio simulations of the Ag(111)/Al2O3 interface at intermediate oxygen partial pressures
The relative stability of different realizations of the Ag(111)/Alumina interfaces with varying oxygen partial pressures is investigated by means of ab initio density functional theory (DFT) simulations. Previous theoretical studies of similar systems always involve oversimplified geometries like stoichiometric Al-terminated, Al-rich, or O-terminated alumina interfaces. Such framework cannot explain the experimental behavior observed at intermediate oxygen partial pressure. Our approach, instead, suggests that the oxygen at the interface can play an important role at intermediate concentrations, leading to a more realistic interpretation of the experimental dat
A hybrid threat model for smart systems
Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately, identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combines the cyber, physical, and human aspects. Our model represents the system’s components relations and security properties by taking into consideration these three aspects. Together with the threat model we also propose a threat analysis method that allows understanding the security state of the system’s components. The threat model and the threat analysis have been implemented into an automatic tool, called TAMELESS, that automatically analyzes threats to the system, verifies its security properties, and generates a graphical representation, useful for security architects to identify the proper prevention/mitigation solutions. We show and prove the use of our threat model and analysis with three cases studies from different sector
An innovative treatment based on sodium citrate for improving the mechanical performances of flax fiber reinforced composites
The goal of this paper is to evaluate the effectiveness of a cost-effective and eco-friendly treatment based on the use of sodium citrate (Na3C6H5O7) on the mechanical properties of flax fiber reinforced composites. To this scope, flax fibers were soaked in mildly alkaline solutions of the sodium salt at different weight concentration (i.e., 5%, 10% and 20%) for 120 h at 25 °C. The modifications on fibers surface induced by the proposed treatment were evaluated through Fourier transform infrared analysis (FTIR), whereas scanning electron microscope (SEM) and helium pycnometer were used to obtain useful information about composites morphology. The effect of the concentration of the treating solution on the mechanical response of composites was determined through quasi-static tensile and flexural tests, Charpy impact tests and dynamical mechanical thermal (DMTA) tests. The results revealed that composites reinforced with flax fibers treated in 10% solution exhibit the best mechanical performances as well as the lowest void contents. SEM analysis supported these findings showing that, by treating fibers in solutions with concentration up to 10%, composites having better morphology can be manufactured, in comparison to untreated ones. Conversely, higher Na3C6H5O7 concentrations negatively affect both the morphology and the mechanical properties of composites
- …