2 research outputs found

    Study of the Fabrication Technology of Hybrid Microfluidic Biochips for Label-Free Detection of Proteins

    No full text
    A study of the peculiarities and a comparative analysis of the technologies used for the fabrication of elements of novel hybrid microfluidic biochips for express biomedical analysis have been carried out. The biochips were designed with an incorporated microfluidic system, which enabled an accumulation of the target compounds in a biological fluid to be achieved, thus increasing the biochip system’s sensitivity and even implementing a label-free design of the detection unit. The multilevel process of manufacturing a microfluidic system of a given topology for label-free fluorometric detection of protein structures is presented. The technological process included the chemical modification of the working surface of glass substrates by silanization using (3-aminopropyl) trimethoxysilane (APTMS), formation of the microchannels, for which SU-8 technologies and a last generation dry film photoresist were studied and compared. The solid-state phosphor layers were deposited using three methods: drop application; airbrushing; and mechanical spraying onto the adhesive surface. The processes of sealing the system, installing input ports, and packaging using micro-assembly technologies are described. The technological process has been optimized and the biochip was implemented and tested. The presented system can be used to design novel high-performance diagnostic tools that implement the function of express detection of protein markers of diseases and create low-power multimodal, highly intelligent portable analytical decision-making systems in medicine

    Magnetic Properties of Bacterial Magnetosomes Produced by Magnetospirillum caucaseum SO-1

    No full text
    In this study, the magnetic properties of magnetosomes isolated from lyophilized magnetotactic bacteria Magnetospirillum caucaseum SO-1 were assessed for the first time. The shape and size of magnetosomes and cell fragments were studied by electron microscopy and dynamic light scattering techniques. Phase and elemental composition were analyzed by X-ray and electron diffraction and Raman spectroscopy. Magnetic properties were studied using vibrating sample magnetometry and electron paramagnetic resonance spectroscopy. Theoretical analysis of the magnetic properties was carried out using the model of clusters of magnetostatically interacting two-phase particles and a modified method of moments for a system of dipole–dipole-interacting uniaxial particles. Magnetic properties were controlled mostly by random aggregates of magnetosomes, with a minor contribution from preserved magnetosome chains. Results confirmed the high chemical stability and homogeneity of bacterial magnetosomes in comparison to synthetic iron oxide magnetic nanoparticles
    corecore