9 research outputs found
Π’ΠΈΠΏΠΎΠ»ΠΎΠ³ΡΡ ΡΠΈΠ½ΡΠ°ΠΊΡΠΈΡΠ½ΠΈΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΡΠΉ Π² Π½ΡΠΌΠ΅ΡΡΠΊΡΠΉ ΡΠ° ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΡΠΉ ΠΌΠΎΠ²Π°Ρ
ΠΡΠΌΠ΅ΡΡΠΊΠ° ΡΠ° ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠ° ΠΌΠΎΠ²ΠΈ Ρ ΠΎΠ΄Π½ΠΎΡΠΈΡΡΠ΅ΠΌΠ½ΠΈΠΌΠΈ ΠΌΠΎΠ²Π°ΠΌΠΈ: ΠΎΠ±ΠΈΠ΄Π²Ρ Π½Π°Π»Π΅ΠΆΠ°ΡΡ Π΄ΠΎ ΡΠ½Π΄ΠΎΡΠ²ΡΠΎΠΏΠ΅ΠΉΡΡΠΊΠΎΡ ΠΌΠΎΠ²Π½ΠΎΡ ΡΡΠΌβΡ. Π‘ΠΏΡΠ»ΡΠ½Ρ ΠΊΠΎΡΠ΅Π½Ρ ΡΠ° ΡΡΠΈΠ²Π°Π»ΠΈΠΉ ΠΏΠ΅ΡΡΠΎΠ΄ ΡΠ·ΠΎΠ»ΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΡΠΎΠ·Π²ΠΈΡΠΊΡ, Π²ΠΊΠ°Π·ΡΡΡΡ Π½Π° ΡΠ΅, ΡΠΎ Π²ΠΊΠ°Π·Π°Π½Ρ ΠΌΠΎΠ²ΠΈ ΠΌΠ°ΡΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΠΎΠ΄ΡΠ±Π½ΠΎΡΡΡ ΡΠ° Π²ΡΠ΄ΠΌΡΠ½Π½ΠΎΡΡΡ Π² ΡΠ²ΠΎΡΠΉ Π²Π½ΡΡΡΡΡΠ½ΡΠΉ Π±ΡΠ΄ΠΎΠ²Ρ. ΠΡΠΌΠ΅ΡΡΠΊΠ° ΡΠ° ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠ° Π½Π°Π»Π΅ΠΆΠ°ΡΡ Π΄ΠΎ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΡ ΡΠ»Π΅ΠΊΡΠΈΠ²Π½ΠΈΡ
ΠΌΠΎΠ². Π¦Π΅ ΠΎΠ·Π½Π°ΡΠ°Ρ, ΡΠΎ Π³ΡΠ°ΠΌΠ°ΡΠΈΡΠ½Π΅ Π·Π½Π°ΡΠ΅Π½Π½Ρ ΡΠ»ΡΠ² Ρ Π½ΠΈΡ
Π²ΠΈΡΠ°ΠΆΠ°ΡΡΡΡΡ, Π·Π΄Π΅Π±ΡΠ»ΡΡΠΎΠ³ΠΎ, Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΉ Ρ ΡΠ΅Π°Π»ΡΠ·ΡΡΡΡΡΡ Π² ΠΌΠ΅ΠΆΠ°Ρ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΠΎΠ²Π°. ΠΠ»Π΅ ΡΠ»Π΅ΠΊΡΠΈΠ²Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ° Π½ΡΠΌΠ΅ΡΡΠΊΠΎΡ ΠΌΠΎΠ²ΠΈ Π±ΡΠ΄Π½ΡΡΠ°, Π½ΡΠΆ Ρ ΡΠ»ΠΎΠ²βΡΠ½ΡΡΠΊΠΈΡ
ΠΌΠΎΠ²Π°Ρ
.ΠΠ΅ΠΌΠ΅ΡΠΊΠΈΠΉ ΠΈ ΡΠΊΡΠ°ΠΈΠ½ΡΠΊΠΈΠΉ ΡΠ·ΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ΄Π½ΠΎΡΠΈΡΡΠ΅ΠΌΠ½ΡΠΌΠΈ ΡΠ·ΡΠΊΠ°ΠΌΠΈ: ΠΎΠ±Π° ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΊ ΠΈΠ½Π΄ΠΎΠ΅Π²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΎΠΉ ΡΠ·ΡΠΊΠΎΠ²ΠΎΠΉ ΡΠ΅ΠΌΡΠ΅. ΠΠ±ΡΠΈΠ΅ ΠΊΠΎΡΠ½ΠΈ ΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠ·ΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ, ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ ΡΠΊΠ°Π·Π°Π½Π½ΡΠ΅ ΡΠ·ΡΠΊΠΈ ΠΈΠΌΠ΅ΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΡ
ΠΎΠ΄ΡΡΠ²Π° ΠΈ ΡΠ°Π·Π»ΠΈΡΠΈΡ Π² ΡΠ²ΠΎΠ΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΌ ΡΡΡΠΎΠ΅Π½ΠΈΠΈ. ΠΠ΅ΠΌΠ΅ΡΠΊΠΈΠΉ ΠΈ ΡΠΊΡΠ°ΠΈΠ½ΡΠΊΠΈΠΉ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΊ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠΈΠΏΡ ΡΠ»Π΅ΠΊΡΠΈΠ²Π½ΡΡ
ΡΠ·ΡΠΊΠΎΠ². ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ Π³ΡΠ°ΠΌΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ»ΠΎΠ² Π² Π½ΠΈΡ
Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ, Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ»Π΅ΠΊΡΠΈΠΉ ΠΈ ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΡΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ»ΠΎΠ²Π°. ΠΠΎ ΡΠ»Π΅ΠΊΡΠΈΠ²Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° Π½Π΅ΠΌΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° Π±Π΅Π΄Π½Π΅Π΅, ΡΠ΅ΠΌ Π² ΡΠ»Π°Π²ΡΠ½ΡΠΊΠΈΡ
ΡΠ·ΡΠΊΠ°Ρ
.German and Ukrainian are single-system languages: both belong to the Indo-European language family. Common roots and a long period of isolated development, indicate that these languages ββhave characteristics of similarity and differences in their internal structure. German and Ukrainian belong to the synthetic type of inflectional languages. This means that the grammatical meaning of words in them is expressed, mainly, with the help of a system of inflexions and is realized within a single graphic word. But the inflectional system of the German language is poorer than in the Slavic languages
Structural features of mutations p.Phe123Leu and p.Asp168Ala GCK.
<p>The structure of GCK in the closed form (PDB code: 1v4s) is represented by cyan ribbons. A) Mutation p.Phe123Leu. Phe123 is structured inside the hydrophobic core of the small domain. Yellow sticks represent hydrophobic residues that constitute the core. Phe123 and Leu123 are represented by red sticks (left and right panel, respectively). B) The sticks represent residue Thr168 and glucose. The right panels show a close-up view of the glucose-binding cleft for the wild-type (top) and for the Ala168 mutant (bottom).</p
Structural features of mutations p.His137Asp, p.Arg392Ser and p.Gly162Asp GCK.
<p>The structure of GCK in the closed form (PDB code:1v4s) is shown as cyan ribbons. A) p.His137Asp. Loop 141β144, which is involved in GKRP binding, is in red. His137 is at the end of the Ξ±3 helix. His137 is a capping residue of the helix, which is terminated by the interaction between side chain of His137 and Phe133. Asp137 (right) is not able to replace His137 interactions but adds a new interaction with Lys104. B) p.Gly162Asp. Yellow sticks represent hydrophobic residues that constitute the core. The location of Gly162 is marked in red (left of the panel). Asp162 is on the right of the panel. C) p.Arg392Ser. Residues Asp42, Glu236, Asn240 and Arg392 are represented by yellow sticks. H-bonds are shown in green. The wild-type enzyme and the p.Arg392Ser mutant are on the left and right of the panel, respectively.</p
Biochemical and phenotypic characteristics of the children affected by GCK MODY
a<p>BMI<i>z</i> scores: (calculated in children aged 2β18 years), see Materials and methods</p>b<p>FPG: Fasting plasma glucose; (impaired fasting glucose [IFG]β=β5.6β6.9 mmol/L; diabetes mellitus [DM]β=ββ₯7.0 mmol/L)</p>c<p>OGTT: Oral glucose tolerance test (normal glucose tolerance [NGT] <7.8 mmol/L; impaired glucose tolerance [IGT]β=β7.8β11.0 mmol/L; DMβ=ββ₯11.1 mmol/L)</p>d<p>FPIR: First phase insulin response (reference value: β₯60.0 Β΅U/ml)</p>e<p>HbA1c: glycosylated haemoglobin (reference value: 4.3β5.9%)</p>f<p>Not available because patient M002 was <2 years old</p>g<p>Not fasting nursling</p>n.a.<p>Not available</p
GCK mutations in children from south Italy affected by GCK MODY
a<p>GenBank: accession nΒ° (AH005826)</p>b<p>The reference cDNA sequence was obtained from GenBank (NM_000162) and +1corresponds to the A of the ATG translation initiation codon</p>c<p>Swissprot accession nΒ° P35557</p>d, e, f<p>Sibling pairs</p
Distribution of the GCK mutations.
<p>The structure of GCK in the closed form (PDB code: 1v4s) is shown as cyan and red ribbons that represent the small and large domain, respectively. Orange ribbons show the Ξ±13 helix. Yellow spheres are the mutation sites. Red and blue circles indicate clusters of mutations in the large and small domain, respectively.</p
GCK mutations detected in MODY2 children from South Italy.
a<p>GenBank: accession number (AH005826). <sup>b</sup>The reference cDNA sequence was obtained from GenBank (NM_000162) and +1 corresponds to the A of the ATG translation initiation codon. <sup>c</sup>Polyphen prediction: probably damaging (1), benign (2), possibly damaging (3). SIFT score: <0.05 deleterious variant, β₯0.05 tolerated variant. <sup>d</sup>Swissprot accession number: P35557. <sup>e</sup>Sibling pairs (MD19/20: two sisters; MD69/70: brother/sister).</p
Kinetic constants of human recombinant wild type-GCK and mutant Ξ²-cell GST-GCK fusion proteins.
<p>Data represent means Β± SEM of 3 separate enzyme expressions each tested in duplicate. Note that the Hill coefficient (nH) and the relative activity index (I<sub>a</sub>) are unit less. Kcat: GCK catalytic constant; S<sub>0.5</sub>: affinity constant for glucose; nH: Hill coefficient; Km for ATP: affinity constant for ATP; I<sub>a</sub>: GCK activity index. (*)<i>p</i><0.05, <i>t</i> test; (**)<i>p</i><0.005, <i>t</i> test.</p
Effect of temperature on the stability of GST-GCK mutants
<p>. Stock enzyme solutions were diluted to 250 Β΅g/ml in storage buffer containing 30% glycerol, 50 mM glucose, 10 mM glutathione, 5 mM DTT, 200 mM KCl and 50 mMTris/HCl, pH 8.0. Panel A: The enzyme solutions were incubated for 30 min at temperatures ranging from 30 to 55Β°C and then assayed at 30Β°C as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038906#s4" target="_blank">Methods</a> section. Panel B: The enzyme solutions were incubated for periods of time from 5 to 60 min at 50Β°C. Results are means and SEM of three independent enzyme preparations for each mutant except for GST-GCK (Phe150Tyr) which corresponds to two independent enzyme preparations. (*) <i>p</i>β€0.03, (β ) <i>p</i><0.008.</p