9 research outputs found

    Випологія синтаксичних конструкцій Π² Π½Ρ–ΠΌΠ΅Ρ†ΡŒΠΊΡ–ΠΉ Ρ‚Π° ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΡ–ΠΉ ΠΌΠΎΠ²Π°Ρ…

    Get PDF
    ΠΡ–ΠΌΠ΅Ρ†ΡŒΠΊΠ° Ρ‚Π° ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠ° ΠΌΠΎΠ²ΠΈ Ρ” односистСмними ΠΌΠΎΠ²Π°ΠΌΠΈ: ΠΎΠ±ΠΈΠ΄Π²Ρ– Π½Π°Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π΄ΠΎ Ρ–Π½Π΄ΠΎΡ”Π²Ρ€ΠΎΠΏΠ΅ΠΉΡΡŒΠΊΠΎΡ— ΠΌΠΎΠ²Π½ΠΎΡ— сім’ї. Π‘ΠΏΡ–Π»ΡŒΠ½Ρ– ΠΊΠΎΡ€Π΅Π½Ρ– Ρ‚Π° Ρ‚Ρ€ΠΈΠ²Π°Π»ΠΈΠΉ ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄ Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ, Π²ΠΊΠ°Π·ΡƒΡŽΡ‚ΡŒ Π½Π° Ρ‚Π΅, Ρ‰ΠΎ Π²ΠΊΠ°Π·Π°Π½Ρ– ΠΌΠΎΠ²ΠΈ ΠΌΠ°ΡŽΡ‚ΡŒ характСристики подібності Ρ‚Π° відмінності Π² своій Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–ΠΉ Π±ΡƒΠ΄ΠΎΠ²Ρ–. ΠΡ–ΠΌΠ΅Ρ†ΡŒΠΊΠ° Ρ‚Π° ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠ° Π½Π°Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π΄ΠΎ синтСтичного Ρ‚ΠΈΠΏΡƒ Ρ„Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΌΠΎΠ². Π¦Π΅ ΠΎΠ·Π½Π°Ρ‡Π°Ρ”, Ρ‰ΠΎ Π³Ρ€Π°ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π΅ значСння слів Ρƒ Π½ΠΈΡ… Π²ΠΈΡ€Π°ΠΆΠ°Ρ”Ρ‚ΡŒΡΡ, Π·Π΄Π΅Π±Ρ–Π»ΡŒΡˆΠΎΠ³ΠΎ, Π·Π° допомогою систСми флСксій Ρ– Ρ€Π΅Π°Π»Ρ–Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π² ΠΌΠ΅ΠΆΠ°Ρ… ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΎΠ³ΠΎ слова. АлС Ρ„Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Π° систСма Π½Ρ–ΠΌΠ΅Ρ†ΡŒΠΊΠΎΡ— ΠΌΠΎΠ²ΠΈ Π±Ρ–Π΄Π½Ρ–ΡˆΠ°, Π½Ρ–ΠΆ Ρƒ ΡΠ»ΠΎΠ²β€™ΡΠ½ΡΡŒΠΊΠΈΡ… ΠΌΠΎΠ²Π°Ρ….НСмСцкий ΠΈ украинский языки ΡΠ²Π»ΡΡŽΡ‚ΡΡ односистСмными языками: ΠΎΠ±Π° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΊ индоСвропСйской языковой сСмьС. ΠžΠ±Ρ‰ΠΈΠ΅ ΠΊΠΎΡ€Π½ΠΈ ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ развития, ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ языки ΠΈΠΌΠ΅ΡŽΡ‚ характСристики сходства ΠΈ различия Π² своСм Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌ строСнии. НСмСцкий ΠΈ украинский ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΊ синтСтичСскому Ρ‚ΠΈΠΏΡƒ Ρ„Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… языков. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ грамматичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ слов Π² Π½ΠΈΡ… выраТаСтся, Π² основном, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ систСмы флСксий ΠΈ рСализуСтся Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΎΠ΄Π½ΠΎΠ³ΠΎ графичСского слова. Но флСктивная систСма Π½Π΅ΠΌΠ΅Ρ†ΠΊΠΎΠ³ΠΎ языка Π±Π΅Π΄Π½Π΅Π΅, Ρ‡Π΅ΠΌ Π² славянских языках.German and Ukrainian are single-system languages: both belong to the Indo-European language family. Common roots and a long period of isolated development, indicate that these languages ​​have characteristics of similarity and differences in their internal structure. German and Ukrainian belong to the synthetic type of inflectional languages. This means that the grammatical meaning of words in them is expressed, mainly, with the help of a system of inflexions and is realized within a single graphic word. But the inflectional system of the German language is poorer than in the Slavic languages

    Structural features of mutations p.Phe123Leu and p.Asp168Ala GCK.

    No full text
    <p>The structure of GCK in the closed form (PDB code: 1v4s) is represented by cyan ribbons. A) Mutation p.Phe123Leu. Phe123 is structured inside the hydrophobic core of the small domain. Yellow sticks represent hydrophobic residues that constitute the core. Phe123 and Leu123 are represented by red sticks (left and right panel, respectively). B) The sticks represent residue Thr168 and glucose. The right panels show a close-up view of the glucose-binding cleft for the wild-type (top) and for the Ala168 mutant (bottom).</p

    Structural features of mutations p.His137Asp, p.Arg392Ser and p.Gly162Asp GCK.

    No full text
    <p>The structure of GCK in the closed form (PDB code:1v4s) is shown as cyan ribbons. A) p.His137Asp. Loop 141–144, which is involved in GKRP binding, is in red. His137 is at the end of the Ξ±3 helix. His137 is a capping residue of the helix, which is terminated by the interaction between side chain of His137 and Phe133. Asp137 (right) is not able to replace His137 interactions but adds a new interaction with Lys104. B) p.Gly162Asp. Yellow sticks represent hydrophobic residues that constitute the core. The location of Gly162 is marked in red (left of the panel). Asp162 is on the right of the panel. C) p.Arg392Ser. Residues Asp42, Glu236, Asn240 and Arg392 are represented by yellow sticks. H-bonds are shown in green. The wild-type enzyme and the p.Arg392Ser mutant are on the left and right of the panel, respectively.</p

    Biochemical and phenotypic characteristics of the children affected by GCK MODY

    No full text
    a<p>BMI<i>z</i> scores: (calculated in children aged 2–18 years), see Materials and methods</p>b<p>FPG: Fasting plasma glucose; (impaired fasting glucose [IFG]β€Š=β€Š5.6–6.9 mmol/L; diabetes mellitus [DM]β€Š=β€Šβ‰₯7.0 mmol/L)</p>c<p>OGTT: Oral glucose tolerance test (normal glucose tolerance [NGT] <7.8 mmol/L; impaired glucose tolerance [IGT]β€Š=β€Š7.8–11.0 mmol/L; DMβ€Š=β€Šβ‰₯11.1 mmol/L)</p>d<p>FPIR: First phase insulin response (reference value: β‰₯60.0 Β΅U/ml)</p>e<p>HbA1c: glycosylated haemoglobin (reference value: 4.3–5.9%)</p>f<p>Not available because patient M002 was <2 years old</p>g<p>Not fasting nursling</p>n.a.<p>Not available</p

    GCK mutations in children from south Italy affected by GCK MODY

    No full text
    a<p>GenBank: accession nΒ° (AH005826)</p>b<p>The reference cDNA sequence was obtained from GenBank (NM_000162) and +1corresponds to the A of the ATG translation initiation codon</p>c<p>Swissprot accession nΒ° P35557</p>d, e, f<p>Sibling pairs</p

    Distribution of the GCK mutations.

    No full text
    <p>The structure of GCK in the closed form (PDB code: 1v4s) is shown as cyan and red ribbons that represent the small and large domain, respectively. Orange ribbons show the Ξ±13 helix. Yellow spheres are the mutation sites. Red and blue circles indicate clusters of mutations in the large and small domain, respectively.</p

    GCK mutations detected in MODY2 children from South Italy.

    No full text
    a<p>GenBank: accession number (AH005826). <sup>b</sup>The reference cDNA sequence was obtained from GenBank (NM_000162) and +1 corresponds to the A of the ATG translation initiation codon. <sup>c</sup>Polyphen prediction: probably damaging (1), benign (2), possibly damaging (3). SIFT score: <0.05 deleterious variant, β‰₯0.05 tolerated variant. <sup>d</sup>Swissprot accession number: P35557. <sup>e</sup>Sibling pairs (MD19/20: two sisters; MD69/70: brother/sister).</p

    Kinetic constants of human recombinant wild type-GCK and mutant Ξ²-cell GST-GCK fusion proteins.

    No full text
    <p>Data represent means Β± SEM of 3 separate enzyme expressions each tested in duplicate. Note that the Hill coefficient (nH) and the relative activity index (I<sub>a</sub>) are unit less. Kcat: GCK catalytic constant; S<sub>0.5</sub>: affinity constant for glucose; nH: Hill coefficient; Km for ATP: affinity constant for ATP; I<sub>a</sub>: GCK activity index. (*)<i>p</i><0.05, <i>t</i> test; (**)<i>p</i><0.005, <i>t</i> test.</p

    Effect of temperature on the stability of GST-GCK mutants

    No full text
    <p>. Stock enzyme solutions were diluted to 250 Β΅g/ml in storage buffer containing 30% glycerol, 50 mM glucose, 10 mM glutathione, 5 mM DTT, 200 mM KCl and 50 mMTris/HCl, pH 8.0. Panel A: The enzyme solutions were incubated for 30 min at temperatures ranging from 30 to 55Β°C and then assayed at 30Β°C as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038906#s4" target="_blank">Methods</a> section. Panel B: The enzyme solutions were incubated for periods of time from 5 to 60 min at 50Β°C. Results are means and SEM of three independent enzyme preparations for each mutant except for GST-GCK (Phe150Tyr) which corresponds to two independent enzyme preparations. (*) <i>p</i>≀0.03, (†) <i>p</i><0.008.</p
    corecore