622 research outputs found
A Generalized Ginzburg-Landau Approach to Second Harmonic Generation
We develop a generalized Ginzburg-Landau theory for second harmonic
generation (SHG) in magnets by expanding the free energy in terms of the order
parameter in the magnetic phase and the susceptibility tensor in the
corresponding high-temperature phase. The non-zero components of the SHG
susceptibility in the ordered phase are derived from the symmetries of the
susceptibility tensor in the high-temperature phase and the symmetry of the
order parameter. In this derivation, the dependence of the SHG susceptibility
on the order parameter follows naturally, and therefore its nonreciprocal
optical properties.
We examine this phenomenology for the magnetoelectric compound CrO as
well as for the ferroelectromagnet YMnO.Comment: European Journal of Physics B (accepted
Electron Correlation Effects in Resonant Inelastic X-ray Scattering of NaV2O5
Element- and site-specific resonant inelastic x-ray scattering spectroscopy
(RIXS) is employed to investigate electron correlation effects in {}. In contrast to single photon techniques, RIXS at the vanadium
edge is able to probe transitions between V d-bands. A sharp energy
loss feature is observed at -1.56 eV, which is well reproduced by a model
calculation including correlation effects. The calculation identifies the loss
feature as excitation between the lower and upper Hubbard bands and permits an
accurate determination of the Hubbard interaction term eV.Comment: 15 pages, four figures, accepted to Phys. Rev. Let
Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy
BACKGROUND: The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis.
One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the
appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the
spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and
aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers.
METHODS: To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used
and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116
cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment.
RESULTS: CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models.
Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide
their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We
demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model.
CONCLUSIONS: CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo
pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to
achieve tumour stasis or regression by CCT271850
Real-world evidence on non-invasive tests and associated cut-offs used to assess fibrosis in routine clinical practice
Background & Aims: Non-invasive tests (NITs) offer a practical solution for advanced fibrosis identification in non-alcoholic fatty liver disease (NAFLD). Despite increasing implementation, their use is not standardised, which can lead to inconsistent interpretation and risk stratification. We aimed to assess the types of NITs and the corresponding cut-offs used in a range of healthcare settings. / Methods: A survey was distributed to a convenience sample of liver health experts who participated in a global NAFLD consensus statement. Respondents provided information on the NITs used in their clinic with the corresponding cut-offs and those used in established care pathways in their areas. / Results: There were 35 respondents from 24 countries, 89% of whom practised in tertiary level settings. A total of 14 different NITs were used, and each respondent reported using at least one (median = 3). Of the respondents, 80% reported using FIB-4 and liver stiffness by vibration-controlled transient elastography (Fibroscan®), followed by the NAFLD fibrosis score (49%). For FIB-4, 71% of respondents used a low cut-off of 7.5 to >20 kPa, respectively). / Conclusions: The cut-offs used for the same NITs for NAFLD risk stratification vary between clinicians. As cut-offs impact test performance, these findings underscore the heterogeneity in risk-assessment and support the importance of establishing consistent guidelines on the standardised use of NITs in NAFLD management. / Lay summary: Owing to the high prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population it is important to identify those who have more advanced stages of liver fibrosis, so that they can be properly treated. Non-invasive tests (NITs) provide a practical way to assess fibrosis risk in patients. However, we found that the cut-offs used for the same NITs vary between clinicians. As cut-offs impact test performance, these findings highlight the importance of establishing consistent guidelines on the standardised use of NITs to optimise clinical management of NAFLD
The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma.
CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition
A rocky composition for an Earth-sized exoplanet
Planets with sizes between that of Earth (with radius R[subscript circle in cross]) and Neptune (about 4 R[subscript circle in cross]) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet’s size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet’s mass—and hence its density, which is a clue to its composition—is more difficult. Planets of size 2–4 R[subscript circle in cross] have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 ± 0.09 R[subscript circle in cross] and a mass of 1.69 ± 0.41 M[subscript circle in cross], the planet’s mean density of 5.3 ± 1.8 g cm[superscript −3] is similar to Earth’s, suggesting a composition of rock and iron.Kepler Participating Scientist Progra
Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine
Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP
Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy
Our Galaxy is thought to have undergone an active evolutionary history
dominated by star formation, the accretion of cold gas, and, in particular,
mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of
these interactions in the form of stellar streams, substructures, and
chemically distinct stellar components. The impact of dwarf galaxy mergers on
the content and morphology of the Galactic disk is still being explored. Recent
studies have identified kinematically distinct stellar substructures and moving
groups, which may have extragalactic origin. However, there is mounting
evidence that stellar overdensities at the outer disk/halo interface could have
been caused by the interaction of a dwarf galaxy with the disk. Here we report
detailed spectroscopic analysis of 14 stars drawn from two stellar
overdensities, each lying about 5 kiloparsecs above and below the Galactic
plane - locations suggestive of association with the stellar halo. However, we
find that the chemical compositions of these stars are almost identical, both
within and between these groups, and closely match the abundance patterns of
the Milky Way disk stars. This study hence provides compelling evidence that
these stars originate from the disk and the overdensities they are part of were
created by tidal interactions of the disk with passing or merging dwarf
galaxies.Comment: accepted for publication in Natur
Rotation of planet-harbouring stars
The rotation rate of a star has important implications for the detectability,
characterisation and stability of any planets that may be orbiting it. This
chapter gives a brief overview of stellar rotation before describing the
methods used to measure the rotation periods of planet host stars, the factors
affecting the evolution of a star's rotation rate, stellar age estimates based
on rotation, and an overview of the observed trends in the rotation properties
of stars with planets.Comment: 16 pages, 4 figures: Invited review to appear in 'Handbook of
Exoplanets', Springer Reference Works, edited by Hans J. Deeg and Juan
Antonio Belmont
Rapid Discovery of Pyrido[3,4- d ]pyrimidine Inhibitors of Monopolar Spindle Kinase 1 (MPS1) Using a Structure-Based Hybridization Approach
Monopolar spindle 1 (MPS1) plays a central role in the transition of cells from metaphase to anaphase and is one of the main components of the spindle assembly checkpoint. Chromosomally unstable cancer cells rely heavily on MPS1 to cope with the stress arising from abnormal numbers of chromosomes and centrosomes and are thus more sensitive to MPS1 inhibition than normal cells. We report the discovery and optimization of a series of new pyrido[3,4-d]pyrimidine based inhibitors via a structure-based hybridization approach from our previously reported inhibitor CCT251455 and a modestly potent screening hit. Compounds in this novel series display excellent potency and selectivity for MPS1, which translates into biomarker modulation in an in vivo human tumor xenograft mode
- …