2,415 research outputs found

    Monitoring and modelling of white dwarfs with extremely weak magnetic fields

    Full text link
    Magnetic fields are detected in a few percent of white dwarfs. The number of such magnetic white dwarfs known is now some hundreds. Fields range in strength from a few kG to several hundred MG. Almost all the known magnetic white dwarfs have a mean field modulus >= 1 MG. We are trying to fill a major gap in observational knowledge at the low field limit (<= 200 kG) using circular spectro-polarimetry. In this paper we report the discovery and monitoring of strong, periodic magnetic variability in two previously discovered "super-weak field" magnetic white dwarfs, WD2047+372 and WD2359-434. WD2047+372 has a mean longitudinal field that reverses between about -12 and +15 kG, with a period of 0.243 d, while its mean field modulus appears nearly constant at 60 kG. The observations can be intepreted in terms of a dipolar field tilted with respect to the stellar rotation axis. WD2359-434 always shows a weak positive longitudinal field with values between about 0 and +12 kG, varying only weakly with stellar rotation, while the mean field modulus varies between about 50 and 100 kG. The rotation period is found to be 0.112 d using the variable shape of the Halpha line core, consistent with available photometry. The field of this star appears to be much more complex than a dipole, and is probably not axisymmetric. Available photometry shows that WD2359-434 is a light variable with an amplitude of only 0.005 mag, our own photometry shows that if WD2047+372 is photometrically variable, the amplitude is below about 0.01 mag. These are the first models for magnetic white dwarfs with fields below about 100 kG based on magnetic measurements through the full stellar rotation. They reveal two very different magnetic surface configurations, and that, contrary to simple ohmic decay theory, WD2359-434 has a much more complex surface field than the much younger WD2047+372.Comment: Accepted for publication in Astronomy & Astrophysic

    Warped polar ring in the Arp 212 galaxy

    Full text link
    The Fabry-Perot scanning interferometer mounted on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences is used to study the distribution and kinematics of ionized gas in the peculiar galaxy Arp 212 (NGC 7625, III Zw 102). Two kinematically distinct subsystems - the inner disk and outer emission filaments, are found within the optical radius of the galaxy. The first subsystem, at galactocentric distances r<3.5 kpc, rotates in the plane of the stellar disk. The inner part of the ionized-gas disk (r<1.5-2 kpc) exactly coincides with the previously known disk consisting of molecular gas. The second subsystem of ionized gas is located at galactocentric distances 2-6 kpc. This subsystem rotates in a plane tilted by a significant angle to the stellar disk. The angle of orbital inclination in the outer disk increases with galactocentric distance and reaches 50 degrees at r=6 kpc. The ionized fraction of the gaseous disk does not show up beyond this galactocentric distance, but we believe that the HI disk continues to warp and approaches the plane that is polar with respect to the inner disk of the galaxy. Hence Arp 212 can be classified as a galaxy with a polar ring (or a polar disk). The observed kinematics of the ionized and neutral gas can be explained assuming that the distribution of gravitational potential in the galaxy is not spherically symmetric. Most probably, the polar ring have formed via accretion of gas from the dwarf satellite galaxy UGC 12549.Comment: 14 pages, 14 EPS figure

    Helicopter Fuselage Drag ─ Combined Computational Fluid Dynamics and Experimental Studies

    Get PDF
    In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage con¦gurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some §ow separation at the rear of the fuselages. Once con¦dence on the CFD method was established, further modi¦cations were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes
    corecore