21 research outputs found

    Substantial Alterations of the Cutaneous Bacterial Biota in Psoriatic Lesions

    Get PDF
    For psoriasis, an idiopathic inflammatory disorder of the skin, the microbial biota has not been defined using cultivation-independent methods. We used broad-range 16S rDNA PCR for archaea and bacteria to examine the microbiota of normal and psoriatic skin. From 6 patients, 19 cutaneous samples (13 from diseased skin and 6 from normal skin) were obtained. Extracted DNA was subjected to the broad range PCR, and 1,925 cloned products were compared with 2,038 products previously reported from healthy persons. Using 98% sequence identity as a species boundary, 1,841 (95.6%) clones were similar to known bacterial 16S rDNA, representing 6 phyla, 86 genera, or 189 species-level operational taxonomic unit (SLOTU); 84 (4.4%) clones with <98% identity probably represented novel species. The most abundant and diverse phylum populating the psoriatic lesions was Firmicutes (46.2%), significantly (P<0.001) overrepresented, compared to the samples from uninvolved skin of the patients (39.0%) and healthy persons (24.4%). In contrast, Actinobacteria, the most prevalent and diverse phylum in normal skin samples from both healthy persons (47.6%) and the patients (47.8%), was significantly (P<0.01) underrepresented in the psoriatic lesion samples (37.3%). Representation of Propionibacterium species were lower in the psoriatic lesions (2.9±5.5%) than from normal persons (21.1±18.2%; P<0.001), whereas normal skin from the psoriatic patients showed intermediate levels (12.3±21.6%). We conclude that psoriasis is associated with substantial alteration in the composition and representation of the cutaneous bacterial biota

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p
    corecore