139 research outputs found
De la Diplomatura al Grado en Logopedia: influencia sobre las tasas de éxito y rendimiento en una asignatura obligatoria
[Resumen] El proceso de convergencia hacia el Espacio Europeo de Educación Superior (EEES) es hoy
día un hecho, y lleva en funcionamiento tiempo suficiente para permitir la realización de
comparaciones. Como consecuencia de su implantación, se ha producido un potente
movimiento innovador en la concepción del sistema educativo universitario dentro de la Unión
Europea, dando respuesta al reto planteado acerca de alcanzar el equilibrio entre la formación
creativa orientada al mercado laboral, la especialización y la formación de futuros
investigadores. Una de las modificaciones más evidentes ha sido la distribución de las clases
presenciales en dos tipos: expositivas (dirigidas al conjunto del grupo, las tradicionales
lecciones magistrales) e interactivas (dirigidas a subgrupos de estudiantes, que se concreta en
actividades tipo seminarios, debates y prácticas), acompañada de cambios simultáneos en las
metodologías docentes y técnicas de evaluación. Con el objetivo de evaluar los resultados de
la adaptación de estudiantes y docentes al EEES, en este trabajo se recoge el análisis
comparativo de la evolución de los resultados académicos en la asignatura “Alteraciones
congénitas del lenguaje”, de la Diplomatura en Logopedia, posteriormente transformada a
“Alteraciones de base congénita” en el Grado en Logopedia, en una franja temporal desde 3
años antes hasta 6 años después de la transformación. Es una materia de segundo curso en el
Grado, obligatoria y con una carga docente de 6 ECTS. Asimismo, se han determinado los
efectos sobre las tasas de éxito, rendimiento y evaluación. El número de estudiantes
matriculados en los últimos años de la Diplomatura fue notablemente bajo. Los resultados
reflejan que el proceso de adaptación tuvo consecuencias inicialmente negativas sobre las
calificaciones, aunque fueron mitigándose con el tiempo, hasta alcanzar en la actualidad
niveles incluso mejores que los anteriores a la adaptación. Mientras que las tasas de éxito y
rendimiento de los primeros cursos del Grado se vieron significativamente reducidas, la tasa
de evaluación mantuvo valores estables durante el periodo analizad
The Organic Selenium Compound Selenomethionine Modulates Bleomycin-Induced DNA Damage and Repair in Human Leukocytes
This is an Accepted Version of the published document. This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s12011-009-8407-9[Abstract] The objective of this work was to evaluate the effects of selenomethionine (SeMet) on the induction, repair, and persistence of DNA damage in human leukocytes challenged with bleomycin (BLM). Comet assay was used to determine DNA strand breaks and hOGG1 for the specific recognition of oxidative damage. Leukocytes were (A) stimulated with phytohemagglutinin, (B) damaged with BLM, and (C) incubated to allow DNA repair. Comet assay was performed after each phase. SeMet (50 μM) was supplemented either during phase A, B, or C, or AB, or ABC. Treatment with SeMet decreased BLM-induced stand breaks when added during phase AB. Results obtained after the repair period indicate that SeMet favors repair of DNA damage especially when applied during phase AB. The comparison between DNA damage before and after repair showed that BLM-induced damage was repaired better in the presence of SeMet. Our results showed antigenotoxic effect of SeMet on BLM-induced DNA and also on repair and persistence of this damage when applied before and simultaneously with BLM.This work was funded by a grant from the Xunta de Galicia (INCITE08PXIB106155PR). V. Valdiglesias was supported by a fellowship from the University of A CoruñaGalicia. Xunta; INCITE08PXIB106155P
Análisis de la brecha de género en los premios otorgados por la Real Academia Galega de Ciencias (RAGC)
[ES] A pesar de los importantes avances en cuanto a la participación de las mujeres en el desarrollo científico y tecnológico en nuestro país, persiste una clara infrarrepresentación femenina en las academias de ciencias e ingeniería. La brecha de género es también visible en los galardones otorgados por estas instituciones. En este trabajo se analiza la brecha de género en los premios otorgados por la Real Academia Galega de Ciencias (RAGC) en 30 de sus convocatorias en el periodo 2013-2021, enfocándonos en varios aspectos relevantes: la composición de los jurados, las candidaturas presentadas y las personas finalmente galardonadas. En la mayoría de los galardones analizados se pone de manifiesto un claro sesgo de género a favor de los varones que se va incrementando a medida que aumenta la cuantía del premio o la relevancia del galardón, con la consiguiente repercusión social en la valoración y visibilización del trabajo de las científicas
Evaluation of Okadaic Acid-Induced Genotoxicity in Human Cells Using the Micronucleus Test and γH2AX Analysis
This is an Accepted Manuscript version of the article, accepted for publication in Journal of Toxicology and Environmental Health, Part A.[Abstract] Marine algal blooms have become a public health concern due to increasing frequency in the environment and severity of exposure consequences. Human intoxications produced by phycotoxins occur globally through consumption of marine fish products containing bioaccumulated toxins. Okadaic acid (OA) is the main representative of diarrheic shellfish poisoning (DSP) toxin. OA was found to inhibit protein phosphatases and to produce oxidative damage, as well as to disturb different cellular functions including cell cycle, gene expression, and DNA repair mechanisms. The aim of this study was to determine whether OA induced genotoxicity by using a micronucleus (MN) test and γH2AX analysis, and to elucidate the underlying mechanisms. Human peripheral blood leukocytes, neuroblastoma cells (SHSY5Y), and hepatoma cells (HepG2) were treated with a range of OA concentrations in the presence and absence of S9 fraction. MN induction was observed in leukocytes at all concentrations tested, and in SHSY5Y and HepG2 cells only at the highest concentration (1000 nM). In contrast, γH2AX analysis was only positive for HepG2 cells. Taking together these data, in addition to the comet assay results obtained in a previous study in this issue, OA was found to exert a either a clastogenic or aneugenic effect dependent upon the cell types examined.This work was funded by a grant from the Xunta de Galicia (INCITE08PXIB106155PR). V. Valdiglesias was supported by a fellowship from the University of A CoruñaGalicia. Xunta; INCITE08PXIB106155P
Identification of Differentially Expressed Genes in SHSY5Y Cells Exposed to Okadaic Acid by Suppression Subtractive Hybridization
[Abstract] Background: Okadaic acid (OA), a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results: In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h). A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY) were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure), excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions: From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.This work was funded by a grant from the Spanish Ministry of Science and Innovation (PSI2010-15115). V. Valdiglesias was supported by a fellowship from the University of A Coruña. Authors would like to thank the Genomics Service from INIBIC (Complejo Hospitalario Universitario A Coruña) for providing their facilitie
Cytogenetic Effects Induced by Prestige Oil on Human Populations: The Role of Polymorphisms in Genes Involved in Metabolism and DNA Repair
This is a manuscript version of the article.[Abstract] The spill from the oil tanker Prestige (NW Spain, November 2002) was perhaps the biggest ecological disaster that happened worldwide in the last decades. As a consequence of this catastrophe a general concern led to a huge mobilization of human and technical resources. Given that no information was reported in the scientific literature regarding to the chronic repercussions to human health of exposure to oil spills, a pilot study was performed by our group revealing some increased genotoxic effects in the subjects exposed to the oil during cleaning activities. Due to the seriousness of the results, we extended our study comprising a larger population and including an extensive evaluation of the main polymorphic sites in metabolizing and DNA-repair genes. General increases in micronucleus (MN) frequency and decreases in the proliferation index were observed in individuals with longer time of exposure. Age was a significant predictor of MN frequency. CYP1A1 3′-UTR, EPHX1 codons 113 and 139, GSTP1, GSTM1 and GSTT1 metabolic polymorphisms, and XRCC3 codon 241 and XPD codon 751 repair polymorphisms influenced cytogenetic damage levels. In view of these results, it seems essential to pay more attention to the chronic human health effects of exposure to oil and to focus new studies on such a relevant but overlooked public health field that involves a large number of people all over the world.This work was partially funded by a grant from the Fundación Arao through the intervention of Dr. Juan Jesús Gestal and Dr. Ernesto Smyth, and by the University of A Coruña. B. Pérez-Cadahía and V. Valdiglesias were supported by fellowships from the University of A Coruña
Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization
<p>Abstract</p> <p>Background</p> <p>Okadaic acid (OA), a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature.</p> <p>Results</p> <p>In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h). A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY) were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure), excepting for NEFM, but their expression was similar to the controls at 48 h.</p> <p>Conclusions</p> <p>From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and <it>in vivo </it>neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.</p
Okadaic Acid Meet and Greet: An Insight into Detection Methods, Response Strategies and Genotoxic Effects in Marine Invertebrates
Harmful Algal Blooms (HABs) constitute one of the most important sources of contamination in the oceans, producing high concentrations of potentially harmful biotoxins that are accumulated across the food chains. One such biotoxin, Okadaic Acid (OA), is produced by marine dinoflagellates and subsequently accumulated within the tissues of filtering marine organisms feeding on HABs, rapidly spreading to their predators in the food chain and eventually reaching human consumers causing Diarrhetic Shellfish Poisoning (DSP) syndrome. While numerous studies have thoroughly evaluated the effects of OA in mammals, the attention drawn to marine organisms in this regard has been scarce, even though they constitute primary targets for this biotoxin. With this in mind, the present work aimed to provide a timely and comprehensive insight into the current literature on the effect of OA in marine invertebrates, along with the strategies developed by these organisms to respond to its toxic effect together with the most important methods and techniques used for OA detection and evaluation
Induction of Oxidative DNA Damage by the Marine Toxin Okadaic Acid Depends on Human Cell Type
This is a manuscript versión of the article.[Abstract] The marine toxin okadaic acid (OA) is the main representative of diarrhoeic shellfish poisoning (DSP) toxins. Its ingestion induces nausea, vomiting, diarrhoea and abdominal ache. It has also been found to trigger cellular and molecular effects at low concentrations. Its mechanism of action has not been described yet. Results of a previous study showed that OA can induce cytotoxic and genotoxic effects, both directly and indirectly, and modulations in DNA repair processes in three different types of human cells (leukocytes, SHSY5Y neuroblastoma and HepG2 cells). These effects varied depending on the type of cell and the concentration employed (Valdiglesias et al., 2010). On that basis, the ability of OA to induce oxidative DNA damage on the same cell types was investigated in the present study. To this end, the antioxidant enzymes catalase and N-acetylcysteine, and the human DNA- glycosylase hOGG1 were used in combination with the alkaline Comet assay. The cells were treated with a range of OA concentrations (5–1000 nM) in the presence and absence of S9 fraction. The results of this study showed that OA induces oxidative DNA damage directly in leukocytes, directly and indirectly in SHSY5Y cells, while it does not induce oxidative DNA damage in HepG2 cells. Combining the outcomes of both studies, the data showed that OA induces both cytotoxicity and genotoxicity, including DNA strand breaks and oxidative DNA damage, in the cells evaluated. However, the extent of these effects are cell type dependent.This work was funded by a grant from the Xunta de Galicia (INCITE08PXIB106155PR). V. Valdiglesias was supported by a fellowship from the University of A CoruñaGalicia. Xunta; INCITE08PXIB106155P
Assessment of Okadaic Acid Effects on Cytotoxicity, DNA Damage and DNA Repair in Human Cells
This is a manuscript version of the article.[Abstract] Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process.This work was funded by a grant from the Xunta de Galicia (INCITE08PXIB106155PR). V. Valdiglesias was supported by a fellowship from the University of A CoruñaGalicia. Xunta; INCITE08PXIB106155P
- …