4,859 research outputs found
Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region
The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay
Search for bottom squarks in pbarp collisions at sqrt(s)=1.8 TeV
We report on a search for bottom squarks produced in pbarp collisions at
sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed
to be produced in pairs and to decay to the lightest supersymmetric particle
(LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be
the lightest neutralino and stable. We set limits on the production cross
section as a function of bottom squark mass and LSP mass.Comment: 5 pages, Latex. submitted 3-12-1999 to PRD - Rapid Communicatio
Search for Squarks and Gluinos in Events Containing Jets and a Large Imbalance in Transverse Energy
Using data corresponding to an integrated luminosity of 79 pb-1, D0 has
searched for events containing multiple jets and large missing transverse
energy in pbar-p collisions at sqrt(s)=1.8 TeV at the Fermilab Tevatron
collider. Observing no significant excess beyond what is expected from the
standard model, we set limits on the masses of squarks and gluinos and on the
model parameters m_0 and m_1/2, in the framework of the minimal low-energy
supergravity models of supersymmetry. For tan(beta) = 2 and A_0 = 0, with mu <
0, we exclude all models with m_squark < 250 GeV/c^2. For models with equal
squark and gluino masses, we exclude m < 260 GeV/c^2.Comment: 10 pages, 3 figures, Submitted to PRL, Fixed typo on page bottom of
p. 6 (QCD multijet background is 35.4 events
Differential Production Cross Section of Z Bosons as a Function of Transverse Momentum at sqrt{s}=1.8 TeV
We present a measurement of the transverse momentum distribution of Z bosons
produced in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0
experiment at the Fermilab Tevatron Collider during 1994--1996. We find good
agreement between our data and a current resummation calculation. We also use
our data to extract values of the non-perturbative parameters for a particular
version of the resummation formalism, obtaining significantly more precise
values than previous determinations.Comment: 10 pages, 2 figures, submitted to Phys. Rev. Letters v2 has margin
error correcte
Search for Charged Higgs Bosons in Decays of Top Quark Pairs
We present a search for charged Higgs bosons in decays of pair-produced top
quarks using 109.2 +- 5.8 pb^-1 of data recorded from ppbar collisions at
sqrt{s} = 1.8 TeV by the D0 detector during 1992-96 at the Fermilab Tevatron.
No evidence is found for charged Higgs production, and most parts of the
[m(H+),tan(beta)] parameter space where the decay t -> bH+ has a branching
fraction close to or larger than that for t -> bW+ are excluded at 95%
confidence level. Assuming m(t) = 175 GeV and sigma(ppbar -> ttbar) = 5.5 pb,
for m(H+) = 60 GeV, we exclude tan(beta) 40.9.Comment: 11 pages, 3 figures, submitted to PR
Measurement of the Top Quark Pair Production Cross Section in the All-jets Decay Channel
We present a measurement of tbar-t production using multijet final states in
pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated
luminosity of 110.3 pb(-1). The analysis has been optimized using neural
networks to achieve the smallest expected fractional uncertainty on the tbar-t
production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/-
1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this
result with previous D0 measurements, where one or both of the W bosons decay
leptonically, gives a tbar-t production cross section of 5.9 +/- 1.2(stat) +/-
1.1(syst) pb.Comment: 6 pages, 3 figures; no substative change in revisio
Measurement of the Top Quark Pair Production Cross Section in pbar-p Collisions Using Multijet Final States
We have studied tbar-t production using multijet final states in pbar-p
collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity
of 110.3 pb(-1). Each of the top quarks with these final states decays
exclusively to a bottom quark and a W boson, with the W bosons decaying into
quark-antiquark pairs. The analysis has been optimized using neural networks to
achieve the smallest expected fractional uncertainty on the tbar-t production
cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.)
pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with
previous D0 measurements, where one or both of the W bosons decay leptonically,
gives a tbar t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.Comment: 30 pages, 32 figures; no substative change in revisio
A measurement of the W boson mass using large rapidity electrons
We present a measurement of the W boson mass using data collected by the D0
experiment at the Fermilab Tevatron during 1994--1995. We identify W bosons by
their decays to e-nu final states where the electron is detected in a forward
calorimeter. We extract the W boson mass, Mw, by fitting the transverse mass
and transverse electron and neutrino momentum spectra from a sample of 11,089 W
-> e nu decay candidates. We use a sample of 1,687 dielectron events, mostly
due to Z -> ee decays, to constrain our model of the detector response. Using
the forward calorimeter data, we measure Mw = 80.691 +- 0.227 GeV. Combining
the forward calorimeter measurements with our previously published central
calorimeter results, we obtain Mw = 80.482 +- 0.091 GeV
Search for Top Squark Pair Production in the Dielectron Channel
This report describes the first search for top squark pair production in the
channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using
74.9 +- 8.9 pb^-1 of data collected using the D0 detector. A 95% confidence
level upper limit on sigma*B is presented. The limit is above the theoretical
expectation for sigma*B for this process, but does show the sensitivity of the
current D0 data set to a particular topology for new physics.Comment: Five pages, including three figures, submitted to PRD Brief Report
Direct Measurement of the Top Quark Mass at D0
We determine the top quark mass m_t using t-tbar pairs produced in the D0
detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the
Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar
W^- final states with one W boson decaying to q-qbar and the other to e-nu or
mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +-
5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in
which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +-
4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed
top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst)
GeV/C^2, consistent with the above result. Studies of kinematic distributions
of the top quark candidates are also presented.Comment: 43 pages, 53 figures, 33 tables. RevTeX. Submitted to Phys. Rev.
- …