10,440 research outputs found

    Failure-recovery model with competition between failures in complex networks: a dynamical approach

    Full text link
    Real systems are usually composed by units or nodes whose activity can be interrupted and restored intermittently due to complex interactions not only with the environment, but also with the same system. Majdand\v{z}i\'c et  al.et\;al. [Nature Physics 10, 34 (2014)] proposed a model to study systems in which active nodes fail and recover spontaneously in a complex network and found that in the steady state the density of active nodes can exhibit an abrupt transition and hysteresis depending on the values of the parameters. Here we investigate a model of recovery-failure from a dynamical point of view. Using an effective degree approach we find that the systems can exhibit a temporal sharp decrease in the fraction of active nodes. Moreover we show that, depending on the values of the parameters, the fraction of active nodes has an oscillatory regime which we explain as a competition between different failure processes. We also find that in the non-oscillatory regime, the critical fraction of active nodes presents a discontinuous drop which can be related to a "targeted" k-core percolation process. Finally, using mean field equations we analyze the space of parameters at which hysteresis and oscillatory regimes can be found

    Social distancing strategies against disease spreading

    Get PDF
    The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, i.ei.e, the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.ei.e, the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.Comment: to be published in "Perspectives and Challenges in Statistical Physics and Complex Systems for the Next Decade", Word Scientific Pres

    Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies

    Get PDF
    The Ebola virus is spreading throughout West Africa and is causing thousands of deaths. In order to quantify the effectiveness of different strategies for controlling the spread, we develop a mathematical model in which the propagation of the Ebola virus through Liberia is caused by travel between counties. For the initial months in which the Ebola virus spreads, we find that the arrival times of the disease into the counties predicted by our model are compatible with World Health Organization data, but we also find that reducing mobility is insufficient to contain the epidemic because it delays the arrival of Ebola virus in each county by only a few weeks. We study the effect of a strategy in which safe burials are increased and effective hospitalisation instituted under two scenarios: (i) one implemented in mid-July 2014 and (ii) one in mid-August---which was the actual time that strong interventions began in Liberia. We find that if scenario (i) had been pursued the lifetime of the epidemic would have been three months shorter and the total number of infected individuals 80\% less than in scenario (ii). Our projection under scenario (ii) is that the spreading will stop by mid-spring 2015

    Financing High Speed Rail Meeting the Transportation Challenge of the \u2790s

    Get PDF
    • …
    corecore