42 research outputs found

    Weak evidence for variable occultation depth of 55 Cnc e with TESS

    Get PDF
    55 Cnc e is in a 0.73 day orbit transiting a Sun-like star. It has been observed that the occultation depth of this Super-Earth, with a mass of 8M⚁M_{\bigoplus} and radius of 2R⚁R_{\bigoplus}, changes significantly over time at mid-infrared wavelengths. Observations with Spitzer measured a change in its day-side brightness temperature of 1200 K, possibly driven by volcanic activity, magnetic star-planet interaction, or the presence of a circumstellar torus of dust. Previous evidence for the variability in occultation was in the infrared range. Here we aim to explore if the variability exists also in the optical. TESS observed 55 Cnc during sectors 21, 44 and 46. We carefully detrend the data and fit a transit and occultation model for each sector in a Markov Chain Monte Carlo routine. In a later stage we use the Leave-One-Out Cross-Validation statistic to compare with a model of constant occultation for the complete set and a model with no occultation. We report an occultation depth of 8±\pm2.5 ppm for the complete set of TESS observations. In particular, we measured a depth of 15±\pm4 ppm for sector 21, while for sector 44 we detect no occultation. In sector 46 we measure a weak occultation of 8±\pm5 ppm. The occultation depth varies from one sector to the next between 1.6 and 3.4 σ\sigma significance. We derive the possible contribution on reflected light and thermal emission, setting an upper limit on the geometric albedo. Based on our model comparison the presence of an occultation is favoured considerably over no occultation, where the model with varying occultation across sectors takes most of the statistical weight. Our analysis confirms a detection of the occultation in TESS. Moreover, our results weakly lean towards a varying occultation depth between each sector, while the transit depth is constant across visits.Comment: 9 pages, 9 figures, accepted for publication on A&

    55 Cancri e’s occultation captured with CHEOPS

    Get PDF
    Past occultation and phase-curve observations of the ultra-short period super-Earth 55 Cnc e obtained at visible and infrared wavelengths have been challenging to reconcile with a planetary reflection and emission model. In this study, we analyse a set of 41 occultations obtained over a two-year timespan with the CHEOPS satellite. We report the detection of 55 Cnc e’s occultation with an average depth of 12 ± 3 ppm. We derive a corresponding 2σ upper limit on the geometric albedo of Ag < 0.55 once decontaminated from the thermal emission measured by Spitzer at 4.5 ”m. CHEOPS’s photometric performance enables, for the first time, the detection of individual occultations of this super-Earth in the visible and identifies short-timescale photometric corrugations likely induced by stellar granulation. We also find a clear 47.3-day sinusoidal pattern in the time-dependent occultation depths that we are unable to relate to stellar noise, nor instrumental systematics, but whose planetary origin could be tested with upcoming JWST occultation observations of this iconic super-Earth

    Impact of non-axillary sentinel node biopsy on staging and treatment of breast cancer patients

    Get PDF
    The purpose of this study was to evaluate the occurrence of lymphatic drainage to non-axillary sentinel nodes and to determine the implications of this phenomenon. A total of 549 breast cancer patients underwent lymphoscintigraphy after intratumoural injection of 99mTc-nanocolloid. The sentinel node was intraoperatively identified with the aid of intratumoural administered patent blue dye and a gamma-ray detection probe. Histopathological examination of sentinel nodes included step-sectioning at six levels and immunohistochemical staining. A sentinel node outside level I or II of the axilla was found in 149 patients (27%): internal mammary sentinel nodes in 86 patients, other non-axillary sentinel nodes in 44 and both internal mammary and other non-axillary sentinel nodes in nineteen patients. The intra-operative identification rate was 80%. Internal mammary metastases were found in seventeen patients and metastases in other non-axillary sentinel nodes in ten patients. Staging improved in 13% of patients with non-axillary sentinel lymph nodes and their treatment strategy was changed in 17%. A small proportion of clinically node negative breast cancer patients can be staged more precisely by biopsy of sentinel nodes outside level I and II of the axilla, resulting in additional decision criteria for postoperative regional or systemic therapy

    Incidence of cardiovascular events after kidney transplantation and cardiovascular risk scores: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular disease (CVD) is the major cause of death after renal transplantation. Not only conventional CVD risk factors, but also transplant-specific risk factors can influence the development of CVD in kidney transplant recipients.</p> <p>The main objective of this study will be to determine the incidence of post-transplant CVD after renal transplantation and related factors. A secondary objective will be to examine the ability of standard cardiovascular risk scores (Framingham, Regicor, SCORE, and DORICA) to predict post-transplantation cardiovascular events in renal transplant recipients, and to develop a new score for predicting the risk of CVD after kidney transplantation.</p> <p>Methods/Design</p> <p>Observational prospective cohort study of all kidney transplant recipients in the A Coruña Hospital (Spain) in the period 1981-2008 (2059 transplants corresponding to 1794 patients).</p> <p>The variables included will be: donor and recipient characteristics, chronic kidney disease-related risk factors, pre-transplant and post-transplant cardiovascular risk factors, routine biochemistry, and immunosuppressive, antihypertensive and lipid-lowering treatment. The events studied in the follow-up will be: patient and graft survival, acute rejection episodes and cardiovascular events (myocardial infarction, invasive coronary artery therapy, cerebral vascular events, new-onset angina, congestive heart failure, rhythm disturbances and peripheral vascular disease).</p> <p>Four cardiovascular risk scores were calculated at the time of transplantation: the Framingham score, the European Systematic Coronary Risk Evaluation (SCORE) equation, and the REGICOR (Registre Gironí del COR (Gerona Heart Registry)), and DORICA (Dyslipidemia, Obesity, and Cardiovascular Risk) functions.</p> <p>The cumulative incidence of cardiovascular events will be analyzed by competing risk survival methods. The clinical relevance of different variables will be calculated using the ARR (Absolute Risk Reduction), RRR (Relative Risk Reduction) and NNT (Number Needed to Treat).</p> <p>The ability of different cardiovascular risk scores to predict cardiovascular events will be analyzed by using the c index and the area under ROC curves. Based on the competing risks analysis, a nomogram to predict the probability of cardiovascular events after kidney transplantation will be developed.</p> <p>Discussion</p> <p>This study will make it possible to determine the post-transplant incidence of cardiovascular events in a large cohort of renal transplant recipients in Spain, to confirm the relationship between traditional and transplant-specific cardiovascular risk factors and CVD, and to develop a score to predict the risk of CVD in these patients.</p

    Beyond a bigger brain:Multivariable structural brain imaging and intelligence

    Get PDF
    AbstractPeople with larger brains tend to score higher on tests of general intelligence (g). It is unclear, however, how much variance in intelligence other brain measurements would account for if included together with brain volume in a multivariable model. We examined a large sample of individuals in their seventies (n=672) who were administered a comprehensive cognitive test battery. Using structural equation modelling, we related six common magnetic resonance imaging-derived brain variables that represent normal and abnormal features—brain volume, cortical thickness, white matter structure, white matter hyperintensity load, iron deposits, and microbleeds—to g and to fluid intelligence. As expected, brain volume accounted for the largest portion of variance (~12%, depending on modelling choices). Adding the additional variables, especially cortical thickness (+~5%) and white matter hyperintensity load (+~2%), increased the predictive value of the model. Depending on modelling choices, all neuroimaging variables together accounted for 18–21% of the variance in intelligence. These results reveal which structural brain imaging measures relate to g over and above the largest contributor, total brain volume. They raise questions regarding which other neuroimaging measures might account for even more of the variance in intelligence

    Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays

    Get PDF
    For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above ∌50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF

    Monitoring precipitable water vapour in near real-time to correct near-infrared observations using satellite remote sensing

    No full text
    Context. In the search for small exoplanets orbiting cool stars whose spectral energy distributions peak in the near infrared, the strong absorption of radiation in this region due to water vapour in the atmosphere is a particularly adverse effect for ground-based observations of cool stars. Aims. To achieve the photometric precision required to detect exoplanets in the near infrared, it is necessary to mitigate the effect of variable precipitable water vapour (PWV) on radial-velocity and photometric measurements. The aim is to enable global PWV correction by monitoring the amount of precipitable water vapour at zenith and along the line of sight of any visible target. Methods. We developed an open-source Python package that uses imagery data obtained with the Geostationary Operational Environmental Satellites (GOES), which provide temperature and relative humidity at different pressure levels to compute the near real-time PWV above any ground-based observatory that is covered by GOES every 5 min or 10 min, depending on the location. Results. We computed PWV values on selected days above Cerro Paranal (Chile) and San Pedro MĂĄrtir (Mexico) to benchmark the procedure. We also simulated different pointing at test targets as observed from the sites to compute the PWV along the line of sight. To asses the accuracy of our method, we compared our results with the on-site radiometer measurements obtained from Cerro Paranal. Conclusions. Our results show that our publicly available code proves to be a good supporting tool for measuring the local PWV for any ground-based facility within the GOES coverage, which will help to reduce correlated noise contributions in near-infrared ground-based observations that do not benefit from on-site PWV measurements

    Investigating the visible phase-curve variability of 55 Cnc e

    No full text
    Meier ValdĂ©s, E. A., et al.[Context] 55 Cnc e is an ultra-short period super-Earth transiting a Sun-like star. Previous observations in the optical range detected a time-variable flux modulation that is phased with the planetary orbital period, whose amplitude is too large to be explained by reflected light and thermal emission alone.[Aims] The goal of the study is to investigate the origin of the variability and timescale of the phase-curve modulation in 55 Cnc e. To this end, we used the CHaracterising ExOPlanet Satellite (CHEOPS), whose exquisite photometric precision provides an opportunity to characterise minute changes in the phase curve from one orbit to the next.[Methods] CHEOPS observed 29 individual visits of 55 Cnc e between March 2020 and February 2022. Based on these observations, we investigated the different processes that could be at the origin of the observed modulation. In particular, we built a toy model to assess whether a circumstellar torus of dust driven by radiation pressure and gravity might match the observed flux variability timescale.[Results] We find that the phase-curve amplitude and peak offset of 55 Cnc e do vary between visits. The sublimation timescales of selected dust species reveal that silicates expected in an Earth-like mantle would not survive long enough to explain the observed phase-curve modulation. We find that silicon carbide, quartz, and graphite are plausible candidates for the circumstellar torus composition because their sublimation timescales are long.[Conclusions] The extensive CHEOPS observations confirm that the phase-curve amplitude and offset vary in time. We find that dust could provide the grey opacity source required to match the observations. However, the data at hand do not provide evidence that circumstellar material with a variable grain mass per unit area causes the observed variability. Future observations with the James Webb Space Telescope (JWST) promise exciting insights into this iconic super-Earth.This work has been carried out within the framework of the National Centre of Competence in Research PlanetS supported by the Swiss National Science Foundation under grants 51NF40_182901 and 51NF40_205606. EMV acknowledges the financial support of the SNSF. EMV thanks Beatriz Campos Estrada for insightful discussion on the sublimation timescales of dust in disintegrating exoplanets. B.-O.D. acknowledges support from the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number MB22.00046. ABr was supported by the SNSA. S.G.S. acknowledges support from FCT through FCT contract no. CEECIND/00826/2018 and POPH/FSE (EC). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project SPICE DUNE, grant agreement no. 947634). LBo, VNa, IPa, GPi, RRa, GSc, VSi, and TZi acknowledge support from CHEOPS ASI-INAF agreement no. 2019-29-HH.0. DJB acknowledges financial support from the CSH, University of Bern. ML acknowledges support of the Swiss National Science Foundation under grant number PCEFP2_194576. ASt acknowledges support from the PLATO/CNES grant at CEA/IRFU/DAp and the French Programme National de PlanĂ©tologie (PNP). This work was supported by FCT - Fundação para a CiĂȘncia e a Tecnologia through national funds and by FEDER through COMPETE2020 - Programa Operacional Competitividade e InternacionalizacĂŁo by these grants: UID/FIS/04434/2019, UIDB/04434/2020, UIDP/04434/2020, PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-032113, PTDC/FIS-AST/28953/2017 & POCI-01-0145-FEDER-028953, PTDC/FIS-AST/28987/2017 & POCI-01-0145-FEDER-028987, O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. YAl acknowledges the support of the Swiss National Fund under grant 200020_172746. We acknowledge support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, PGC2018-098153-B-C33, PGC2018-098153-B-C31, ESP2017-87676-C5-1-R, MDM-2017-0737 Unidad de Excelencia Maria de Maeztu-Centro de AstrobiologĂ­a (INTA-CSIC), as well as the support of the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the ESA contract no. 4000124370. S.C.C.B. acknowledges support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004. X.B., S.C., D.G., M.F. and J.L. acknowledge their role as ESA-appointed CHEOPS science team members. ACC acknowledges support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant number ST/R003203/1. This project was supported by the CNES. The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of LiĂšge through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. L.D. is an F.R.S.-FNRS Postdoctoral Researcher. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES. grant agreement no. 724427). It has also been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). DE acknowledges financial support from the Swiss National Science Foundation for project 200021_200726. M.F. and C.M.P. gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18). DG gratefully acknowledges financial support from the CRT foundation under grant no. 2018.2323 “Gaseous or rocky? Unveiling the nature of small worlds”. M.G. is an F.R.S.-FNRS Senior Research Associate. MNG is the ESA CHEOPS Project Scientist and Mission Representative, and as such also responsible for the Guest Observers (GO) Programme. M.N.G. does not relay proprietary information between the GO and Guaranteed Time Observation (GTO) Programmes, and does not decide on the definition and target selection of the GTO Programme. S.H. gratefully acknowledges CNES funding through the grant 837319. KGI is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme. She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection for the programme. This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. P.M. acknowledges support from STFC research grant number ST/M001040/1. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127). IRI acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-B-C33, as well as the support of the Generalitat de Catalunya/CERCA programme. GyMSz acknowledges the support of the Hungarian National Research, Development and Innovation Office (NKFIH) grant K-125015, a PRODEX Experiment Agreement No. 4000137122, the LendĂŒlet LP2018-7/2021 grant of the Hungarian Academy of Science and the support of the city of Szombathely. V.V.G. is an F.R.S.-FNRS Research Associate. N.A.W. acknowledges UKSA grant ST/R004838/1. A.C.C. and T.W. acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant number ST/R003203/1. NCS acknowledges funding by the European Union (ERC, FIERCE, 101052347). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council.Peer reviewe

    Quantum effects on the stability of the He5I2 van der Waals conformers

    No full text
    7 pags., 6 figs., 2 tabs.We present 15-dimensional quantum multiconfiguration time-dependent Hartree calculations of the vibrational levels of the HeI van der Waals (vdW) complex employing an ab initio-based potential energy surface (PES). The energies and spatial features of such bound structures are analyzed, providing predictions on the structures and relative stabilities of its three lowest isomers. We found that the most stable isomer corresponds to all five He atoms encircling the I molecule, indicating that in this case the anharmonic quantum effects do not stabilize the isomers involving a He atom in a linear configuration as reported previously for the smaller HeI systems. Such finding provides information on the overall structuring of the finite-size-solvent systems, highlighting the intriguing interplay between weak intermolecular interactions and quantum effects. © 2019 Wiley Periodicals, Inc.The authors thank to Centro de Calculo del IFF, SGAI (CSIC) and CESGA for allocation of computer time. This work has been supported by MINECO grant No. FIS2017-83157-P, “CSIC for Development” (i-COOP) ref: ICOOPB20214, COST Action CM1405(MOLIM), and by the Research Headquarters Address Bogota - DIEB, National University of Colombia, HERMES code: 37338
    corecore