22 research outputs found
Scn1a gene reactivation after symptom onset rescues pathological phenotypes in a mouse model of Dravet syndrome
Dravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells
dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice
Dravet syndrome (DS) is a severe epileptic encephalopathy caused mainly by heterozygous loss-of-function mutations of the SCN1A gene, indicating haploinsufficiency as the pathogenic mechanism. Here we tested whether catalytically dead Cas9 (dCas9)-mediated Scn1a gene activation can rescue Scn1a haploinsufficiency in a mouse DS model and restore physiological levels of its gene product, the Nav1.1 voltage-gated sodium channel. We screened single guide RNAs (sgRNAs) for their ability to stimulate Scn1a transcription in association with the dCas9 activation system. We identified a specific sgRNA that increases Scn1a gene expression levels in cell lines and primary neurons with high specificity. Nav1.1 protein levels were augmented, as was the ability of wild-type immature GABAergic interneurons to fire action potentials. A similar enhancement of Scn1a transcription was achieved in mature DS interneurons, rescuing their ability to fire. To test the therapeutic potential of this approach, we delivered the Scn1a-dCas9 activation system to DS pups using adeno-associated viruses. Parvalbumin interneurons recovered their firing ability, and febrile seizures were significantly attenuated. Our results pave the way for exploiting dCas9-based gene activation as an effective and targeted approach to DS and other disorders resulting from altered gene dosage
13C-NMR determination of simultaneous xylose and glucose fermentation by a newly isolated strain (G11) of Klebsiella planticola
In vitro NMR techniques and substrates selectively enriched with C-13 were used to follow the step-by-step metabolism of glucose and xylose, on their own or as mixed substrates in the ratio as they occur in hydrolysates from hemicellulose. The organism used was a newly isolated strain of Klebsiella planticola isolated from soil where maize has been cultivated for 30 years. Results suggest that glucose is converted to pyruvate via the Embden-Meyerhof pathway and then to lactate and ethanol. No evidence of 2,3-butandiol or formate metabolism was observed. This organism had a higher rate of uptake of xylose than previously studied microorganisms, resulting in ethanol, lactate, acetate succinate and formate as end products. Xylose metabolism in K. planticola G11, unlike that reported for many other organisms, was not inhibited by glucose. The addition of glucose, after 2 h of xylose fermentation, did not change the rate of xylose metabolism
Incidence and risk factors for respiratory tract bacterial colonization and infection in lung transplant recipients
To evaluate incidence of and risk factors for respiratory bacterial colonization and infections within 30 days from lung transplantation (LT). We retrospectively analyzed microbiological and clinical data from 94 patients transplanted for indications other than cystic fibrosis, focusing on the occurrence of bacterial respiratory colonization or infection during 1 month of follow-up after LT. Thirty-three percent of patients developed lower respiratory bacterial colonization. Bilateral LT and chronic heart diseases were independently associated to a higher risk of overall bacterial colonization. Peptic diseases conferred a higher risk of multi-drug resistant (MDR) colonization, while longer duration of aerosol prophylaxis was associated with a lower risk. Overall, 35% of lung recipients developed bacterial pneumonia. COPD (when compared to idiopathic pulmonary fibrosis, IPF) and higher BMI were associated to a lower risk of bacterial infection. A higher risk of MDR infection was observed in IPF and in patients with pre-transplant colonization and infections. The risk of post-LT respiratory infections could be stratified by considering several factors (indication for LT, type of LT, presence of certain comorbidities, and microbiologic assessment before LT). A wider use of early nebulized therapies could be useful to prevent MDR colonization, thus potentially lowering infectious risk.
© 2021, The Author(s)