133 research outputs found
3D Security, 3Dsec: Trustworthy System Security through 3D Integrated Hardware [poster]
Poster, Wednesday Poster Session, NSF Secure and Trustworthy Cyberspace (SaTC) Principal Investigators Meeting, National Harbor, MD, 28 November 2012. [Poster] [Meeting] [Final Report]This project is investigating a novel approach to trustworthy system development based on 3D integration, an emerging chip fabrication technique in which two or more integrated circuit dies are combined into a single stack using vertical conductive posts. Since the dies may be manufactured separately, 3D circuit integration offers the option of enhancing a commodity processor with a variety of custom security functions, which are manufacturing options applicable only to those systems that require them. This research introduces a fundamentally new method to incorporate security mechanisms into hardware and has the potential to significantly shift the economics of trustworthy systems
Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion
Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture ‘hits’ that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment
Efficient Dielectrophoretic Patterning of Embryonic Stem Cells in Energy Landscapes Defined by Hydrogel Geometries
In this study, we have developed an integrated microfluidic platform for actively patterning mammalian cells, where poly(ethylene glycol) (PEG) hydrogels play two important roles as a non-fouling layer and a dielectric structure. The developed system has an embedded array of PEG microwells fabricated on a planar indium tin oxide (ITO) electrode. Due to its dielectric properties, the PEG microwells define electrical energy landscapes, effectively forming positive dielectrophoresis (DEP) traps in a low-conductivity environment. Distribution of DEP forces on a model cell was first estimated by computationally solving quasi-electrostatic Maxwell’s equations, followed by an experimental demonstration of cell and particle patterning without an external flow. Furthermore, efficient patterning of mouse embryonic stem (mES) cells was successfully achieved in combination with an external flow. With a seeding density of 107 cells/mL and a flow rate of 3 μL/min, trapping of cells in the microwells was completed in tens of seconds after initiation of the DEP operation. Captured cells subsequently formed viable and homogeneous monolayer patterns. This simple approach could provide an efficient strategy for fabricating various cell microarrays for applications such as cell-based biosensors, drug discovery, and cell microenvironment studies
A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs
Human induced pluripotent stem cells (hiPSCs) hold enormous potential, however several obstacles impede their translation to industrial and clinical applications. Here we describe a platform to efficiently generate, characterize and maintain single cell and feeder-free (FF) cultured hiPSCs by means of a small molecule cocktail media additive. Using this strategy we have developed an effective multiplex sorting and high-throughput selection platform where individual clonal hiPSC lines are readily obtained from a pool of candidate clones, expanded and thoroughly characterized. By promoting survival and self-renewal, the selected hiPSC clones can be rapidly expanded over multiple FF, single-cell passages while maintaining their pluripotency and genomic stability as demonstrated by trilineage differentiation, karyotype and copy number variation analysis. This study provides a robust platform that increases efficiency, throughput, scale and quality of hiPSC generation and facilitates the industrial and clinical use of iPSC technology
Quadruple gene-engineered natural killer cells enable multi-antigen targeting for durable antitumor activity against multiple myeloma
Allogeneic natural killer (NK) cell adoptive transfer is a promising treatment for several cancers but is less effective for the treatment of multiple myeloma. In this study, we report on quadruple gene-engineered induced pluripotent stem cell (iPSC)-derived NK cells designed for mass production from a renewable source and for dual targeting against multiple myeloma through the introduction of an NK cell-optimized chimeric antigen receptor (CAR) specific for B cell maturation antigen (BCMA) and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity when combined with therapeutic anti-CD38 antibodies. Additionally, these cells express a membrane-bound interleukin-15 fusion molecule to enhance function and persistence along with knock out of CD38 to prevent antibody-mediated fratricide and enhance NK cell metabolic fitness. In various preclinical models, including xenogeneic adoptive transfer models, quadruple gene-engineered NK cells consistently demonstrate durable antitumor activity independent of exogenous cytokine support. Results presented here support clinical translation of this off-the-shelf strategy for effective treatment of multiple myeloma
Genomic Targets of Brachyury (T) in Differentiating Mouse Embryonic Stem Cells
The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse.Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)(n) repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents.Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species
The Advancement of Biomaterials in Regulating Stem Cell Fate.
Stem cells are well-known to have prominent roles in tissue engineering applications. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into every cell type in the body while adult stem cells such as mesenchymal stem cells (MSCs) can be isolated from various sources. Nevertheless, an utmost limitation in harnessing stem cells for tissue engineering is the supply of cells. The advances in biomaterial technology allows the establishment of ex vivo expansion systems to overcome this bottleneck. The progress of various scaffold fabrication could direct stem cell fate decisions including cell proliferation and differentiation into specific lineages in vitro. Stem cell biology and biomaterial technology promote synergistic effect on stem cell-based regenerative therapies. Therefore, understanding the interaction of stem cell and biomaterials would allow the designation of new biomaterials for future clinical therapeutic applications for tissue regeneration. This review focuses mainly on the advances of natural and synthetic biomaterials in regulating stem cell fate decisions. We have also briefly discussed how biological and biophysical properties of biomaterials including wettability, chemical functionality, biodegradability and stiffness play their roles
A 3D Split Manufacturing Approach to Trustworthy System Development
Securing the supply chain of integrated circuits is of the utmost importance to computer security. In addition to counterfeit
microelectronics, the theft or malicious modification of designs in the foundry can result in catastrophic damage to critical systems
and large projects. In this Technical Report, we describe a 3D architecture that splits a design into two separate tiers: one tier that
contains critical security functions is manufactured in a trusted foundry; another tier is manufactured in an unsecured foundry. We
argue that a split manufacturing approach to hardware trust based on 3D integration is viable and provides several advantages over
other approaches.Naval Postgraduate SchoolApproved for public release; distribution is unlimited
Hardware Assistance for Trustworthy Systems Through 3-D-Integration
Hardware resources are abundant; state-of-the-art processors have over one billion transistors. Yet for a variety of reasons, specialized hardware functions for high assurance processing are seldom (i.e., a couple of features per vendor over twenty years) integrated into these commodity processors, despite a small flurry of late (e.g., ARM TrustZone, IntelVT-x/VT-d and AMD-V/AMD-Vi, Intel TXT and AMD SVM, and Intel AES-NI). Furthermore, as chips increase in complexity, trustworthy processing of sensitive information can become increasingly difficult to achieve due to extensive on-chip resource sharing and the lack of corresponding protection mechanisms. In this paper, we introduce a method to enhance the security of commodity integrated circuits, using minor modifications, in conjunction with a separate integrated circuit that can provide monitoring, access control, and other useful security functions. We introduce a new architecture using a separate control plane, stacked using 3-D integration, that allows for the function and economics of specialized security mechanisms, not available from a coprocessor alone, to be integrated with the underlying commodity computing hardware. We first describe a general methodology to modify the host computation plane by attaching an optional control plane using 3-D integration. In a developed example we show how this approach can increase system trustworthiness, through mitigating the cache-based side channel problem by routing signals from the computation plane through a cache monitor in the 3-D control plane.We show that the overhead of our example application, in terms of area, delay and performance impact, is negligible.Approved for public release; distribution is unlimited
- …