1 research outputs found
Predicting molecular vibronic spectra using time-domain analog quantum simulation
Spectroscopy is one of the most accurate probes of the molecular world.
However, predicting molecular spectra accurately is computationally difficult
because of the presence of entanglement between electronic and nuclear degrees
of freedom. Although quantum computers promise to reduce this computational
cost, existing quantum approaches rely on combining signals from individual
eigenstates, an approach that is difficult to scale because the number of
eigenstates grows exponentially with molecule size. Here, we introduce a method
for scalable analog quantum simulation of molecular spectroscopy, by performing
simulations in the time domain. Our approach can treat more complicated
molecular models than previous ones, requires fewer approximations, and can be
extended to open quantum systems with minimal overhead. We present a direct
mapping of the underlying problem of time-domain simulation of molecular
spectra to the degrees of freedom and control fields available in a trapped-ion
quantum simulator. We experimentally demonstrate our algorithm on a trapped-ion
device, exploiting both intrinsic electronic and motional degrees of freedom,
showing excellent quantitative agreement for a single-mode vibronic
photoelectron spectrum of SO.Comment: 13 pages, 8 figure