657 research outputs found

    A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli

    Get PDF
    Motivation: Inclusion body formation has been a major deterrent for overexpression studies since a large number of proteins form insoluble inclusion bodies when overexpressed in Escherichia coli. The formation of inclusion bodies is known to be an outcome of improper protein folding; thus the composition and arrangement of amino acids in the proteins would be a major influencing factor in deciding its aggregation propensity. There is a significant need for a prediction algorithm that would enable the rational identification of both mutants and also the ideal protein candidates for mutations that would confer higher solubility-on-overexpression instead of the presently used trial-and-error procedures. Results: Six physicochemical properties together with residue and dipeptide-compositions have been used to develop a support vector machine-based classifier to predict the overexpression status in E.coli. The prediction accuracy is ~72% suggesting that it performs reasonably well in predicting the propensity of a protein to be soluble or to form inclusion bodies. The algorithm could also correctly predict the change in solubility for most of the point mutations reported in literature. This algorithm can be a useful tool in screening protein libraries to identify soluble variants of proteins

    Extracellular Vesicles: Evolving Factors in Stem Cell Biology

    Get PDF
    Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies

    A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli

    Get PDF
    ABSTRACT Motivation: Inclusion body formation has been a major deterrent for overexpression studies since a large number of proteins form insoluble inclusion bodies when overexpressed in Escherichia coli. The formation of inclusion bodies is known to be an outcome of improper protein folding; thus the composition and arrangement of amino acids in the proteins would be a major influencing factor in deciding its aggregation propensity. There is a significant need for a prediction algorithm that would enable the rational identification of both mutants and also the ideal protein candidates for mutations that would confer higher solubility-on-overexpression instead of the presently used trial-anderror procedures. Results: Six physicochemical properties together with residue and dipeptide-compositions have been used to develop a support vector machine-based classifier to predict the overexpression status in E.coli. The prediction accuracy is~72% suggesting that it performs reasonably well in predicting the propensity of a protein to be soluble or to form inclusion bodies. The algorithm could also correctly predict the change in solubility for most of the point mutations reported in literature. This algorithm can be a useful tool in screening protein libraries to identify soluble variants of proteins

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Label-free optical monitoring of surface adhesion of extracellular vesicles by grating coupled interferometry

    Get PDF
    In this proof-of-principle study a label-free optical sensor is demonstrated to monitor the surface adhesion of extracellular vesicles secreted by live cells on to various extracellular matrix proteins

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer

    Get PDF
    Herein, we describe a novel approach in the search for prostate cancer biomarkers, which relies on the transcriptome within tumour exosomes. As a proof-of-concept, we show the presence of two known prostate cancer biomarkers, PCA-3 and TMPRSS2:ERG the in exosomes isolated from urine of patients, showing the potential for diagnosis and monitoring cancer patients status

    Exosomes: Looking back three decades and into the future

    Get PDF
    Exosomes are extracellular membrane vesicles whose biogenesis by exocytosis of multivesicular endosomes was discovered in 1983. Since their discovery 30 years ago, it has become clear that exosomes contribute to many aspects of physiology and disease, including intercellular communication. We discuss the initial experiments that led to the discovery of exosomes and highlight some of the exciting current directions in the field
    • …
    corecore