7 research outputs found

    A modified hydrogel production protocol to decrease cellular content

    Get PDF
    PURPOSE: To analyze the cytotoxicity and cell in porcine-derived decellularized skin matrix. METHODS: We analyzed the effect of multiple decellularization processes by histological analysis, DNA quantification, and flow cytometry. Subsequently, we analyzed the most appropriate hydrogel concentration to minimize cytotoxicity on fibroblast culture and to maximize cell proliferation. RESULTS: After the fourth decellularization, the DNA quantification showed the lowest DNA concentration (< 50 ng/mg). Histological analysis showed no cell components in the hydrogel. Moreover, hematoxylin and eosin showed a heterogeneous structure of collagen fibers. The best hydrogel concentration ranged from 3 to 25%, and there was no significant difference between the 24 hours and seven days. CONCLUSIONS: The process of hydrogel production was effective for removing cells and DNA elements. The best hydrogel concentration ranged from 3 to 25%

    Cysteine and glycine-rich protein 3 (Crp3) as a critical regulator of elastolysis, inflammation, and smooth muscle cell apoptosis in abdominal aortic aneurysm development

    Get PDF
    Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease for which surgical or endovascular repair are the only currently available therapeutic strategies. The development of AAA involves the breakdown of elastic fibers (elastolysis), infiltration of inflammatory cells, and apoptosis of smooth muscle cells (SMCs). However, the specific regulators governing these responses remain unknown. We previously demonstrated that Cysteine and glycine-rich protein 3 (Crp3) sensitizes SMCs to apoptosis induced by stretching. Building upon this finding, we aimed to investigate the influence of Crp3 on elastolysis and apoptosis during AAA development. Using the elastase-CaCl2 rat model, we observed an increase in Crp3 expression, aortic diameter, and a reduction in wall thickness in wild type rats. In contrast, Crp3−/− rats exhibited a decreased incidence of AAA, with minimal or no changes in aortic diameter and thickness. Histopathological analysis revealed the absence of SMC apoptosis and degradation of elastic fibers in Crp3−/− rats, accompanied by reduced inflammation and diminished proteolytic capacity in Crp3−/− SMCs and bone marrow-derived macrophages. Collectively, our findings provide evidence that Crp3 plays a crucial role in AAA development by modulating elastolysis, inflammation, and SMC apoptosis. These results underscore the potential significance of Crp3 in the context of AAA progression and offer new insights into therapeutic targets for this disease

    Three-dimensional matrix of type I collagen regulating breast cancer stem cells.

    No full text
    O câncer de mama é o tipo mais freqüente e o segundo mais letal no mundo. Embora ass taxas de sobrevida dos pacientes tenham aumentado consideravelmente nas últimas décadas, indicadores prognósticos desfavoráveis são associados a pacientes com diagnóstico em fase avançada e presença de metástases, frequentemente associadas à existência de células-tronco tumorais (CTT). As CTT são indiferenciadas e capazes de autorrenovação e diferenciação, o que as torna fundamentais para a manutenção da heterogeneidade celular intratumoral. As CTTs são altamente invasivas, tumorigênicas e resistentes a tratamentos convencionais, sendo frequentemente associadas ao surgimento de metástase e recidiva após tratamento. O microambiente tumoral modula as CTT por meio de células e da matriz extracelular (MEC), uma estrutura biologicamente dinâmica, complexa e que regula processos celulares como migração, invasão e diferenciação. A MEC é composta por uma grande variedade de moléculas, peptídeos e macromoléculas, sendo o colágeno seu componente mais abundante. A alta densidade mamográfica é frequentemente associada a elevada rigidez da MEC e deposição aumentada de colágeno fibrilar, principalmente colágeno tipo I (Col I), e é um dos maiores fatores de risco independentes para o desenvolvimento do câncer de mama. A alta densidade de Col I e rigidez da MEC também está associada à maior agressividade tumoral e metástase. Col I também induz o fenótipo tronco tumoral em diversos tipos celulares tumorais, embora o papel da densidade sobre este efeito seja pouco esclarecido. Nosso estudo avaliou a hipótese de a alta densidade de Col I induzir o fenótipo tronco tumoral. Cultivamos linhagens normais (MCF-10A) e tumorais (MDA-MB-231 e MCF-7) de mama em géis de baixa, média e alta densidade de Col I. Também cultivamos células em superfície bidimensional (2D) e em suspensão para geração de mamoesferas (ME), representando o cultivo tradicional e de enriquecimento de CTTs, respectivamente. Avaliamos os níveis do imunofenótipo tronco (CD44+CD24-), expressão gênica e proteica de marcadores de CTTs e de resposta mecânica ao substrato (mecanotransdução), bem como potencial clonogênico, autorrenovação celular e alinhamento fibrilar de géis de Col I. Alta densidade de Col I elevou os níveis da subpopulação CD44+CD24- e inibiu o alongamento celular da linhagem MDA-MB-231, porém não modulou a expressão de marcadores de CTT, bem como potencial clonogênico, autorrenovação celular e alinhamento fibrilar de géis de Col I. A alta densidade de Col I induziu aumento dos níveis totais da isoforma variante da glicoproteína CD44 (CD44v), receptor de estrógeno (RE &#945) e do fator de pluripotência Sox2 em linhagem MCF-7 derivada de ME. Entretanto, os níveis nucleares dos fatores de transcrição (RE &#945 e Sox2) permaneceram inalterados. Em comum, a alta densidade de Col I não elevou os níveis nucleares do mecanotransdutor YAP em linhagens MDAMB-231 e MCF-7 derivada de ME. Concluímos que a alta densidade de Col I induz parcialmente o fenótipo molecular, mas não o funcional, de células tumorais mamárias.Breast cancer is the most frequent and second deadliest cancer type worldwide. Although patient survival rates have increased considerably in recent decades, unfavorable prognostic indicators are associated with patients with advanced disease stage at diagnosis and presence of metastases, frequently associated with the existence of cancer stem cells (CSC). CSC are undifferentiated and capable of self renewal and differentiation, making them fundamental for the maintenance of intratumoral cellular heterogeneity. CTTs are highly invasive, tumorigenic and resistant to conventional treatments, and are frequently associated with the onset of metastasis and relapse after treatment. The tumor microenvironment modulates CTT by means of cells and the extracellular matrix (ECM), a biologically complex and dynamic structure that regulates cell processes such as migration, invasion and differentiation. ECM is composed of a large variety of molecules, peptides and macromolecules, with collagen being its most abundant component. High mammographic density is often associated with high MEC stiffness and increased deposition of fibrillar collagen, mainly type I collagen (Coll I), and is one of the main independent risk factors for breast câncer development. High Coll I density and ECM stifness are also associated with increased tumor aggressiveness and metastasis. Coll I also induces tumor stemness in several tumor cell types, although the role of its density on this effect is unclear. Our study evaluated the hypothesis that high Coll I density induces the tumor stemness. We cultured normal-like- (MCF-10A) and tumoral (MDA-MB-231 and MCF-7) breast cell lines in low-, medium- and high-density Coll I gels. We also cultured cells in twodimensional (2D) surface and in suspension for the generation of mammospheres (MS), representing the traditional cell culture and CSC enrichment, respectively. We evaluated the levels of the CSC immunophenotype (CD44+CD24), gene/protein expression of CSC markers and mechanical response to the substrate (mechanotransduction), as well as the clonogenic potential, cell self-renewal and fibrillar alignment of Col I gels. High Coll I density increased the levels of the CD44+CD24- subpopulation and inhibited cell elongation of the MDA-MB-231 cell line, but did not modulate the expression of CSC markers as well as clonogenic potential, cell self-renewal and fibrillar alignment of Col I gels. High Coll I density increased total levels of the variant CD44 glycoprotein (CD44v), estrogen receptor (ER) and the pluripotency factor Sox2 in MS-derived MCF-7. However, the nuclear levels of the transcription factors (ER &#945 and Sox2) remained unchanged. In common, high Coll I density did not increase nuclear levels of the mechanotransducer YAP in MDA-MB- 231 and MS-derived cell lines. We conclude that high Coll I density partially induces the molecular stemness, but not the functional, phenotype of mammary tumor cells

    Integrated systems biology approach identifies gene targets for endothelial dysfunction

    No full text
    Abstract Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro‐ and anti‐ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro‐ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti‐ED network was enriched in hypoxia, angiogenesis and cancer‐related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease‐specific candidate drug targets for endothelial dysfunction

    A modified hydrogel production protocol to decrease cellular content

    No full text
    Purpose: To analyze the cytotoxicity and cell in porcine-derived decellularized skin matrix. Methods: We analyzed the effect of multiple decellularization processes by histological analysis, DNA quantification, and flow cytometry. Subsequently, we analyzed the most appropriate hydrogel concentration to minimize cytotoxicity on fibroblast culture and to maximize cell proliferation. Results: After the fourth decellularization, the DNA quantification showed the lowest DNA concentration (< 50 ng/mg). Histological analysis showed no cell components in the hydrogel. Moreover, hematoxylin and eosin showed a heterogeneous structure of collagen fibers. The best hydrogel concentration ranged from 3 to 25%, and there was no significant difference between the 24 hours and seven days. Conclusion: The process of hydrogel production was effective for removing cells and DNA elements. The best hydrogel concentration ranged from 3 to 25%
    corecore