12 research outputs found

    Thymus‐derived regulatory T cells restrain pro‐inflammatory Th1 responses by downregulating CD

    Full text link
    The severity and intensity of autoimmune disease in Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) patients and in scurfy mice emphasizes the critical role played by thymus-derived regulatory T cells (tTregs) in maintaining peripheral immune tolerance. However, although tTregs are critical to prevent lethal autoimmunity and excessive inflammatory responses, their suppressive mechanism remains elusive. Here we demonstrate that tTregs selectively inhibit CD27/CD70-dependent Th1 priming, while leaving the IL-12-dependent pathway unaffected. Immunized mice depleted of tTregs showed an increased response of IFN-γ-secreting CD4+ T cells that was strictly reliant on a functional CD27/CD70 pathway. In vitro studies revealed that tTregs downregulate CD70 from the plasma membrane of dendritic cells (DCs) in a CD27-dependent manner. CD70 downregulation required contact between Tregs and DCs and resulted in endocytosis of CD27 and CD70 into the DC. These findings reveal a novel mechanism by which tTregs can maintain tolerance or prevent excessive, proinflammatory Th1 responsesin pressSCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe

    Cutting edge: Hypoxia-inducible factor 1 negatively regulates Th1 function

    No full text
    Tissue hypoxia can occur in physiological and pathological conditions. When O2 availability decreases, the transcription factor hypoxia-inducible factor (HIF)-1α is stabilized and regulates cellular adaptation to hypoxia. The objective of this study was to test whether HIF-1α regulates T cell fate and to define the molecular mechanisms of this control. Our data demonstrate that Th1 cells lose their capacity to produce IFN-γ when cultured under hypoxia. HIF-1α-/- Th1 cells were insensitive to hypoxia, underlining a critical role for HIF-1α. Our results point to a role for IL-10, as suggested by the increased IL-10 expression at low O2 levels and the unchanged IFN-γ production by IL-10-deficient Th1 cells stimulated in hypoxic conditions. Accordingly, STAT3 phosphorylation is increased in Th1 cells under hypoxia, leading to enhanced HIF-1α transcription, which, in turn, may inhibit suppressor of cytokine signaling 3 transcription. This positive-feedback loop reinforces STAT3 activation and downregulates Th1 responses that may cause collateral damage to the host.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Agonistic anti-CD27 antibody ameliorates EAE by suppressing IL-17 production.

    No full text
    CD27/CD70 costimulation enhances T-cell survival, memory formation and Th1-cell differentiation and effector function. In addition to promoting Th1 responses, CD27 signaling has been shown to exert a negative regulatory role on IL-17 production, resulting in increased sensitivity of CD27 KO mice to EAE. By inducing EAE in full CD27 KO mice, and in a novel, T-cell specific CD27 KO mouse strain (CD4-Cre x CD27flox/flox ), we demonstrate herein that CD27 engagement by its natural ligand (CD70) suppresses IL-17 production in a cell autonomous fashion. We further show that CD27 engagement by an agonistic antibody given after EAE induction or at symptom onset similarly suppresses IL-17 production by activated CD4+ T cells infiltrating the inflamed CNS while IFN-γ production was unaffected, leading to an amelioration of inflammatory-related symptoms. These findings propose CD27 costimulation as a potential candidate for therapeutic manipulation to treat autoimmune and autoinflammatory diseases characterized by excessive IL-17 production.info:eu-repo/semantics/publishe

    Intestinal immunopathology is associated with decreased CD73-generated adenosine during lethal infection.

    No full text
    The ectonucleotidases CD39 and CD73 sequentially degrade the extracellular ATP pool and release immunosuppressive adenosine, thereby regulating inflammatory responses. This control is likely to be critical in the gastrointestinal tract where high levels of ATP are released in particular by commensal bacteria. The aim of this study was therefore to evaluate the involvement of the adenosinergic regulation in the intestine of mice in steady-state conditions and on acute infection with Toxoplasma gondii. We show that both conventional (Tconv) and regulatory (Treg) CD4(+) T lymphocytes express CD39 and CD73 in the intestine of naive mice. CD73 expression was downregulated during acute infection with T. gondii, leading to impaired capacity to produce adenosine. Interestingly, the expression of adenosine receptors was maintained and treatment with receptor agonists limited immunopathology and dysbiosis, suggesting that the activation of adenosine receptors may constitute an efficient approach to control intestinal inflammation associated with decreased ectonucleotidase expression.Mucosal Immunology advance online publication, 12 November 2014; doi:10.1038/mi.2014.108.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Chronic CD27-CD70 costimulation promotes type 1-specific polarization of effector Tregs.

    No full text
    Most T lymphocytes, including regulatory T cells, express the CD27 costimulatory receptor in steady state conditions. There is evidence that CD27 engagement on conventional T lymphocytes favors the development of Th1 and cytotoxic responses in mice and humans, but the impact on the regulatory lineage is unknown.info:eu-repo/semantics/publishe

    Anti-CTLA-4 treatment induces IL-10-producing ICOS+ regulatory T cells displaying IDO-dependent anti-inflammatory properties in a mouse model of colitis.

    No full text
    BACKGROUND AND AIMS: Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) has been shown to act as a negative regulator of T cell function and has been implicated in the regulation of T helper 1 (Th1)/Th2 development and the function of regulatory T cells. Tests were carried out to determine whether anti-CTLA-4 treatment would alter the polarisation of naive T cells in vivo. METHODS: Mice were treated with anti-CTLA-4 monoclonal antibody (mAb) (UC10-4F10) at the time of immunisation or colonic instillation of trinitrobenzene sulfonic acid (TNBS). The cytokines produced by lymph node cells after in vitro antigenic stimulation and the role of indoleamine 2,3 dioxygenase (IDO) and of interleukin-10 (IL-10) were tested, and the survival of mice was monitored. RESULTS: Injection of anti-CTLA-4 mAb in mice during priming induced the development of adaptive CD4(+) regulatory T cells which expressed high levels of ICOS (inducible co-stimulator), secreted IL-4 and IL-10. This treatment inhibited Th1 memory responses in vivo and repressed experimental intestinal inflammation. The anti-CTLA-4-induced amelioration of disease correlated with IDO expression and infiltration of ICOS(high) Foxp3(+) T cells in the intestine, suggesting that anti-CTLA-4 acted indirectly through the development of regulatory T cells producing IL-10 and inducing IDO. CONCLUSIONS: These observations emphasise the synergy between IL-10 and IDO as anti-inflammatory agents and highlight anti-CTLA-4 treatment as a potential novel immunotherapeutic approach for inducing adaptive regulatory T cells.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    PD-1 is involved in dysregulation of type-2 innate lymphoid cells in a murine model of obesity

    No full text
    Recent observations clearly highlight the critical role of type 2 innate lymphoid cells in maintaining the homeostasis of adipose tissues in humans and mice. This cell population promotes beiging and limits adiposity directly and indirectly by sustaining a Th2-prone environment enriched in eosinophils and alternatively activated macrophages. Accordingly, the number and function of type 2 innate lymphoid cells (ILC2s) are strongly impaired in obese individuals. In this work, we identify the PD-1-PD-L1 pathway as a factor leading to ILC2 destabilization upon high-fat feeding resulting in impaired tissue metabolism. Tumor necrosis factor (TNF) appears to play a central role, triggering interleukin-33 (IL-33)-dependent PD-1 expression on ILC2s and recruiting and activating PD-L1hi M1 macrophages. PD-1 blockade partially restores the type 2 innate axis, raising the possibility of restoring tissue homeostasis. The function of ILC2s is compromised during obesity. Here, Oldenhove et al. show that ILC2 inhibition is mediated by the PD-1-PD-L1 pathway. PD-1 blockade in obese mice improved ILC2 function, reinforced type 2 innate responses, and promoted tissue homeostasis. PD-1 may therefore represent a target for immune intervention in obesity-associated disorders.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    PHD2 Constrains Antitumor CD8+ T-cell Activity.

    No full text
    The prolyl hydroxylase domain/hypoxia-inducible factor (PHD/HIF) pathway has been implicated in a wide range of immune and inflammatory processes, including in the oxygen-deprived tumor microenvironment. To examine the effect of HIF stabilization in antitumor immunity, we deleted Phd2 selectively in T lymphocytes using the cre/lox system. We show that the deletion of PHD2 in lymphocytes resulted in enhanced regression of EG7-OVA tumors, in a HIF-1α-dependent manner. The enhanced control of neoplastic growth correlated with increased polyfunctionality of CD8+ tumor-infiltrating lymphocytes, as indicated by enhanced expression of IFNγ, TNFα, and granzyme B. Phenotypic and transcriptomic analyses pointed to a key role of glycolysis in sustaining CTL activity in the tumor bed and identified the PHD2/HIF-1 pathway as a potential target for cancer immunotherapy.info:eu-repo/semantics/publishe

    The CD27/CD70 pathway negatively regulates visceral adipose tissue-resident Th2 cells and controls metabolic homeostasis

    No full text
    Summary: Adipose tissue homeostasis relies on the interplay between several regulatory lineages, such as type 2 innate lymphoid cells (ILC2s), T helper 2 (Th2) cells, regulatory T cells, eosinophils, and type 2 macrophages. Among them, ILC2s are numerically the dominant source of type 2 cytokines and are considered as major regulators of adiposity. Despite the overlap in immune effector molecules and sensitivity to alarmins (thymic stromal lymphopoietin and interleukin-33) between ILC2s and resident memory Th2 lymphocytes, the role of the adaptive axis of type 2 immunity remains unclear. We show that mice deficient in CD27, a member of the tumor necrosis factor receptor superfamily, are more resistant to obesity and associated disorders. A comparative analysis of the CD4 compartment of both strains revealed higher numbers of fat-resident memory Th2 cells in the adipose tissue of CD27 knockout mice, which correlated with decreased programmed cell death protein 1-induced apoptosis. Our data point to a non-redundant role for Th2 lymphocytes in obesogenic conditions
    corecore