54 research outputs found

    dBug: Systematic Testing of Unmodified Distributed and Multi-threaded Systems

    Full text link

    Elevated serum levels of soluble CD154 in children with juvenile idiopathic arthritis

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Cytokines play important roles in mediating inflammation in autoimmunity. Several cytokines are elevated in serum and synovial fluid samples from children with Juvenile Idiopathic Arthritis (JIA). Soluble CD154 (sCD154) is elevated in other autoimmune disorders, but has not been characterized in JIA. Our objectives were to determine if sCD154 is elevated in JIA, and to examine correlations between sCD154 and other inflammatory cytokines.</p> <p>Methods</p> <p>Serum from 77 children with JIA and 81 pediatric controls was analyzed for interleukin (IL)1β, IL2, IL4, IL5, IL6, IL8, IL10, IL12, IL13, sCD154, interferon-γ (IFNγ), soluble IL2 receptor (sIL2R), and tumor necrosis factor-α (TNFα), using the Luminex Multi-Analyte Profiling system. Differences in levels of cytokines between cases and controls were analyzed. Logistic regression was also performed.</p> <p>Results</p> <p>sCD154 was significantly elevated in cases compared to controls (p < 0.0001). IL1β, IL5, IL6, IL8, IL13, IFNγ, sIL2R, and TNFα were also significantly elevated in JIA. Levels of sCD154 were highly correlated with IL1β, IL6, IL8, and TNFα (p < 0.0001). Logistic regression analysis suggested that IL6 (odds ratio (OR): 1.4, p < 0.0001), sCD154 (OR: 1.1, p < 0.0001), and TNFα (OR: 1.1, p < 0.005) were positively associated with JIA, while IL10 (OR: 0.5, p < 0.002) was protective. sCD154 was elevated in all JIA subtypes, with highest levels among more severe subtypes. IL1β, IL6, IL8, sIL2R and TNFα were also elevated in several JIA subtypes.</p> <p>Conclusion</p> <p>Serum levels of sCD154, IL1β, IL6, IL8, sIL2R and TNFα are elevated in most JIA subtypes, suggesting a major role for sCD154, and these cytokines and cytokine receptors in the pathogenesis of JIA.</p

    Functional Polymorphisms in PRODH Are Associated with Risk and Protection for Schizophrenia and Fronto-Striatal Structure and Function

    Get PDF
    PRODH, encoding proline oxidase (POX), has been associated with schizophrenia through linkage, association, and the 22q11 deletion syndrome (Velo-Cardio-Facial syndrome). Here, we show in a family-based sample that functional polymorphisms in PRODH are associated with schizophrenia, with protective and risk alleles having opposite effects on POX activity. Using a multimodal imaging genetics approach, we demonstrate that haplotypes constructed from these risk and protective functional polymorphisms have dissociable correlations with structure, function, and connectivity of striatum and prefrontal cortex, impacting critical circuitry implicated in the pathophysiology of schizophrenia. Specifically, the schizophrenia risk haplotype was associated with decreased striatal volume and increased striatal-frontal functional connectivity, while the protective haplotype was associated with decreased striatal-frontal functional connectivity. Our findings suggest a role for functional genetic variation in POX on neostriatal-frontal circuits mediating risk and protection for schizophrenia

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Static-Analysis Assisted Dynamic Verification of MPI Waitany Programs (Poster Abstract)

    No full text

    Sound and Efficient Dynamic Verification of MPI Programs with Probe Non-Determinism ⋆

    No full text
    Abstract. We consider the problem of verifying MPI programs that use MPI_Probe and MPI_Iprobe. Conventional testing tools, known to be inadequate in general, are even more so for testing MPI programs containing MPI probes. A few reasons are: (i) use of the MPI_ANY_SOURCE argument can make MPI probes non-deterministic, allowing them to match multiple senders, (ii) an MPI_Recv that follows an MPI probe need not match the MPI_Send that was successfully probed, and (iii) simply re-running the MPI program, even with schedule perturbations, is insufficient to bring out all behaviors of an MPI program using probes. We develop several key insights that help develop an elegant solution: prioritizing MPI processes during dynamic verification, handling nondeterminism, and safe handling of probe loops. These solutions are incorporated into a new version of our dynamic verification tool ISP. ISP is now able to efficiently and soundly verify larger MPI examples, including MPI-BLAST and ADLB.

    Phase I/II evaluation of RV1001, a novel PI3Kδ inhibitor, in spontaneous canine lymphoma.

    Get PDF
    BACKGROUND: RV1001 is a novel, potent, and selective PI3Kδ inhibitor. The purpose of this study was to evaluate the safety and efficacy of RV1001 in canine Non-Hodgkin lymphoma (NHL). METHODS AND RESULTS: Inhibition of endogenous pAKT by RV1001 in primary canine NHL cells was determined by Western blotting. A phase I study of RV1001 was performed in 21 dogs with naïve and drug resistant T and B-cell NHL to assess safety, pharmacokinetic profile, and response to therapy. The objective response rate was 62% (complete response (CR) n = 3; partial response (PR) n = 10), and responses were observed in both naïve and chemotherapy-resistant B and T cell NHL. This study provided the recommended starting dose for a phase II, non-pivotal, exploratory, open label multi-centered clinical trial in 35 dogs with naïve and drug resistant T and B-cell NHL, to further define the efficacy and safety profile of RV1001. The objective response rate in the phase II study was 77% (CR n = 1; PR n = 26). Clinical toxicities were primarily hepatobiliary and gastrointestinal, and were responsive to dose modifications and/or temporary drug discontinuation. Hepatotoxicity was the primary dose limiting toxicity. CONCLUSIONS: RV1001 exhibits good oral bioavailability, an acceptable safety profile, and biologic activity with associated inhibition of pAKT in dogs with B and T cell NHL. Data from these studies can be leveraged to help inform the design of future studies involving isoform-selective PI3K inhibitors in humans
    • …
    corecore