44 research outputs found

    The Effect of Melatonin on Behavioral, Molecular, and Histopathological Changes in Cuprizone Model of Demyelination

    Get PDF
    Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. The protective effects of melatonin (MLT) on various neurodegenerative diseases, including MS, have been suggested. In the present study, we examined the effect of MLT on demyelination, apoptosis, inflammation, and behavioral dysfunctions in the cuprizone toxic model of demyelination. C57BL/6J mice were fed a chaw containing 0.2 % cuprizone for 5 weeks and received two doses of MLT (50 and 100 mg/kg) intraperitoneally for the last 7 days of cuprizone diet. Administration of MLT improved motor behavior deficits induced by cuprizone diet. MLT dose-dependently decreased the mean number of apoptotic cells via decreasing caspase-3 and Bax as well as increasing Bcl-2 levels. In addition, MLT significantly enhanced nuclear factor-κB activation and decreased heme oxygenase-1 level. However, MLT had no effect on interleukin-6 and myelin protein production. Our data revealed that MLT improved neurological deficits and enhanced cell survival but was not able to initiate myelin production in the cuprizone model of demyelination. These findings may be important for the design of potential MLT therapy in demyelinating disorders, such as MS. © 2015, Springer Science+Business Media New York

    Acral epidermolytic hyperkeratosis

    No full text

    Protective Effect of a cAMP Analogue on Behavioral Deficits and Neuropathological Changes in Cuprizone Model of Demyelination

    No full text
    Multiple sclerosis (MS) is an inflammatory demyelinating disease that leads to neuronal cell loss. Cyclic AMP and its analogs are well known to decrease inflammation and apoptosis. In the present study, we examined the effects of bucladesine, a cell-permeable analogue of cyclic adenosine monophosphate (cAMP), on myelin proteins (PLP, PMP-22), inflammation, and apoptotic, as well as anti-apoptotic factors in cuprizone model of demyelination. C57BL/6J mice were fed with chow containing 0.2 % copper chelator cuprizone or vehicle by daily oral gavage for 5 weeks to induce reversible demyelination predominantly of the corpus callosum. Bucladesine was administered intraperitoneally at different doses (0.24, 0.48, or 0.7 μg/kg body weight) during the last 7 days of 5-week cuprizone treatment. Bucladesine exhibited a protective effect on myelination. Furthermore, bucladesine significantly decreased the production of interleukin-6 pro-inflammatory mediator as well as nuclear factor-κB activation and reduced the mean number of apoptotic cells compared to cuprizone-treated mice. Bucladesine also decreased production of caspase-3 as well as Bax and increased Bcl-2 levels. Our data revealed that enhancement of intracellular cAMP prevents demyelination and plays anti-inflammatory and anti-apoptotic properties in mice cuprizone model of demyelination. This suggests the modulation of intracellular cAMP as a potential target for treatment of MS. © 2014 Springer Science+Business Media New York
    corecore