11 research outputs found

    Monolithic Integration Of Dual Optical Elements On High Power Semicond

    Get PDF
    This dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to control the grating coupler duty cycle and shape. The near-field intensity profile outcoupled by the grating is modeled using a combination of finite-difference time domain (FDTD) analysis of the nonuniform grating and a self-consistent model of the broad area active region. Improvement of the near-field intensity profile in good agreement with the FDTD model is demonstrated by varying the duty cycle from 20% to 55% and including the aspect ratio dependent etching (ARDE) for sub-micron features. The grating diffraction efficiency is estimated to be higher than 95% using a detailed analysis of the losses mechanisms of the device. The grating reflectivity is estimated to be as low as 2.10-4. The low reflectivity of the light extraction process is shown to increase the device efficiency and efficiently suppress lasing oscillations if both cleaved facets are replaced by grating couplers to produce 1.5W QCW with 11nm bandwidth into a single spot a few mm above the device. Peak power in excess of 30W without visible COMD is achieved in this case. Having optimized, the light extraction process, we demonstrate the integration of three different optical functions on the substrate of the surface-emitting laser. First, a 40 level refractive microlens milled using focused ion beam shows a twofold reduction of the full-width half maximum 1mm above the device, showing potential for monolithic integration of coupling optics on the wafer. We then show that differential quantum efficiency of 65%, the highest reported for a grating-coupled device, can be achieved by lowering the substrate reflectivity using a 200nm period tapered subwavelength grating that has a grating wavevector oriented parallel to the electric field polarization. The low reflectivity structure shows trapezoidal sidewall profiles obtained using a soft mask erosion technique in a single etching step. Finally, we demonstrate that, unlike typical methods reported so far for in-plane beam-shaping of laser diodes, the integration of a beam-splitting element on the device substrate does not affect the device efficiency. The proposed device configuration can be tailored to satisfy a wide range of applications including high power pump lasers, superluminescent diodes, or optical amplifiers applications

    Head-Mounted Display With Eye Tracking Capability

    Get PDF
    The eye-tracking system is based on the reflection of four light emitting diodes (LED)s at the cornea of users eve. The LEDs emit infrared light at 900 nanometers and the virtual images formed behind the cornea as well as a near infrared image of the pupil are displayed on a charged couple device (CCD) sensor. The optical system used to display virtual environments is also used to conjugate the virtual images of the LEDs to the CCD sensor. This optimizes the integration of eyetracking system into the head mounted device (HMD). The four LEDs are laid out around the imaging (optical) system and their beam (rays) impinge directly on the eye by reflection on the hot mirror. Then the light reflected by the cornea is reflected again by the hot mirror, goes through the optical system and the cold mirror to be imaged on the sensor. The whole eye is illuminated by near infrared light and the contrast between the dark pupil and the bright iris on the CCD sensor allows knowledge of the location

    Laser to Fiber Coupling

    Get PDF
    Our wafer scale processing techniques produce chip-laser-diodes with a diffraction grating (78) that redirects output light out the top (88) and/or bottom surfaces. Generally, a diffraction grating (78) and integrated lens-grating (78) are used herein to couple light from the chip to an output fiber (74), and the lens-grating (78) is spaced from the diffraction grating (76). Preferably the diffraction grating (76) and integrated lens grating (78) are also used to couple light from the output fiber (74) back to the active region of the chip. The integrated lens-grating (78) can be in a coupling block (82). The use of a coupling block (82) can eliminate facet-type damage . A coupling block (82) is generally used herein to couple light from the chip to an output fiber (74), and preferably to couple feedback reflected from the fiber (74) back to the chip

    Picosecond Pulse Generation Using A Saturable Absorber Section Of Grating-Coupled Surface-Emitting Laser

    No full text
    We report on a passively and hybridly mode-locked grating-coupled surface-emitting laser (GCSEL) using the unpumped section of the GCSEL as a saturable absorber. We obtain 8.8-ps full-width at half-maximum (FWHM) autocorrelation pulses in passive mode-locked operation and an FWHM pulse duration of 3.4 ps in hybrid mode-locked operation, which are the shortest pulses from a GCSEL external cavity. With hybrid mode-locking, a peak power of 0.26 W and a spectral bandwidth of 0.6 nm are obtained. These results demonstrate the potential of multisegment GCSELs in ultrashort pulse generation. © 2005 IEEE

    Passive And Hybrid Modelocking Of A Grating-Coupled Surface-Emitting Laser (Gcsel)

    No full text
    We report the first passive and hybrid modelocking of a grating-coupled surface-emitting laser (GCSEL), exploiting the unpumped grating section of the GCSEL as a saturable absorber to generate short pulses, is demonstrated. Pulsewidths 2.8psec with 1.1nm bandwidth at 980nm are obtained ©2005 Optical Society of America

    Hybrid Modelocking Of External Cavity With Grating-Coupled Surface Emitting Laser

    No full text
    A hybridly modelocked grating-coupled surface-emitting laser (GCSEL) with pulse duration 2.8psec at 980nm is demonstrated. The unpumped grating section of the GCSEL is used as a saturable absorber to generate pulses with a 535MHz repetition rate. The peak power of 0.31W and a spectral bandwidth of 1.1nm are obtained

    Passive And Hybrid Modelocking Of A Grating-Coupled Surface-Emitting Laser (Gcsel)

    No full text
    We report the first passive and hybrid modelocking of a grating-coupled surfaceemitting laser (GCSEL), exploiting the unpumped grating section of the GCSEL as a saturable absorber to generate short pulses, is demonstrated. Pulsewidths 2.8psec with 1.1nm bandwidth at 980nm are obtained. © 2005 Optical Society of America

    Analysis Of Eyepoint Locations And Accuracy Of Rendered Depth In Binocular Head-Mounted Displays

    No full text
    Accuracy of rendered depth in virtual environments includes the correct specification of the eyepoints from which a stereoscopic pair of images is rendered. Rendered depth errors should be minimized for any virtual environment. It is however critical if perception is the object of study in such environments, or augmented reality environments are created where virtual objects must be registered with their real counterparts. Based on fundamental optical principles, the center of the entrance pupil is the eyepoint location that minimizes rendered depth errors over the entire field of view if eyetracking is enable. Because binocular head mounted displays (HMDs) have typically no eyetracking capability, the change in eyepoints location associated with eye vergence in HMDs is not accounted for. To predict the types and the magnitude of rendered depth errors that thus result, we conducted a theoretical investigation of rendered depth errors linked to natural eye movements in virtual environments for three possible eyepoint locations: the center of the entrance pupil, the nodal point, and the center of rotation of the eye. Results show that, while the center of rotation yields minimal rendered depth errors at the gaze point, it also yields rendered angular errors around the gaze point, not previously reported

    <title>Analysis of eyepoint locations and accuracy of rendered depth in binocular head-mounted displays</title>

    No full text
    Accuracy of rendered depth in virtual environments includes the correct specification of the eyepoints from which a stereoscopic pair of images is rendered. Rendered depth errors should be minimized for any virtual environment. It is however critical if perception is the object of study in such environments, or augmented reality environments are created where virtual objects must be registered with their real counterparts. Based on fundamental optical principles, the center of the entrance pupil is the eyepoint location that minimizes rendered depth errors over the entire field of view if eyetracking is enable. Because binocular head mounted displays (HMDs) have typically no eyetracking capability, the change in eyepoints location associated with eye vergence in HMDs is not accounted for. To predict the types and the magnitude of rendered depth errors that thus result, we conducted a theoretical investigation of rendered depth errors linked to natural eye movements in virtual environments for three possible eyepoint locations: the center of the entrance pupil, the nodal point, and the center of rotation of the eye. Results show that, while the center of rotation yields minimal rendered depth errors at the gaze point, it also yields rendered angular errors around the gaze point, not previously reported

    Passive And Hybrid Modelocking Of A Grating-Coupled Surface-Emitting Laser (Gcsel)

    No full text
    We report the first passive and hybrid modelocking of a grating-coupled surfaceemitting laser (GCSEL), exploiting the unpumped grating section of the GCSEL as a saturable absorber to generate short pulses, is demonstrated. Pulsewidths 2.8psec with 1.1nm bandwidth at 980nm are obtained. © 2005 Optical Society of America
    corecore