88 research outputs found

    Metabotropic glutamate receptor blockade reduces preservation damage in livers from donors after cardiac death

    Get PDF
    We previously demonstrated that the blockade of mGluR5 by 2-methyl-6(phenylethynyl)pyridine (MPEP) reduces both cold and warm ischemia/reperfusion injury. Here we evaluated whether MPEP reduces the hepatic preservation injury in rat livers from cardiac-death-donors (DCDs). Livers from DCD rats were isolated after an in situ warm ischemia (30 min) and preserved for 22 h at 4 °C with UW solution. Next, 10 mg/Kg MPEP or vehicle were administered 30 min before the portal clamping and added to the UW solution (3 µM). LDH released during washout was quantified. Liver samples were collected for iNOS, eNOS, NO, TNF-α, ICAM-1, caspase-3 and caspase-9 protein expression and nuclear factor-erythroid-2-related factor-2 (Nrf2) gene analysis. Lower LDH levels were detected in control grafts versus DCD groups. An increase in eNOS and NO content occurred after MPEP treatment; iNOS and TNF-α content was unchanged. ICAM-1 expression was reduced in the MPEP-treated livers as well as the levels of caspase-3 and caspase-9. Nrf2, oxidative stress-sensitive gene, was recovered to control value by MPEP. These results suggest that MPEP can be used to reclaim DCD livers subjected to an additional period of cold ischemia during hypothermic storage. MPEP protects against apoptosis and increased eNOS, whose overexpression has been previously demonstrated to be protective in hepatic ischemia/reperfusion damage

    Selective blockade of mglu5 metabotropic glutamate receptors is protective against acetaminophen hepatotoxicity in mice

    Get PDF
    BACKGROUND/AIMS: mGlu5 metabotropic glutamate receptor antagonists protect rat hepatocytes against hypoxic death. Here, we have examined whether mGlu5 receptor antagonists are protective against liver damage induced by oxidative stress. METHODS: Toxicity of isolated hepatocytes was induced by tert-butylhydroperoxide (t-BuOOH) after pretreatment with the mGlu5 receptor antagonists, MPEP, SIB-1757 and SIB-1893. The effect of these drugs was also examined in mice challenged with toxic doses of acetaminophen. RESULTS: Addition of tBuOOH (0.5 mM) to isolated hepatocytes induced cell death (70+/-5% at 3 h). Addition of MPEP or SIB-1893 to hepatocytes reduced both the production of reactive oxygen species (ROS) and cell toxicity induced by t-BuOOH (tBuOOH=70+/-5%; tBuOOH+MPEP=57+/-6%; tBuOOH+SIB-1893=40+/-4%). In mice, a single injection of acetaminophen (300 mg/kg, i.p.) induced centrilobular liver necrosis, which was detectable after 24 h. MPEP (20 mg/kg, i.p.) substantially reduced liver necrosis and the production of ROS, although it did not affect the conversion of acetaminophen into the toxic metabolite, N-acetylbenzoquinoneimine. MPEP, SIB-1893 and SIB-1757 (all at 20 mg/kg, i.p.) also reduced the increased expression and activity of liver iNOS induced by acetaminophen. CONCLUSIONS: We conclude that pharmacological blockade of mGlu5 receptors might represent a novel target for the treatment of drug-induced liver damage

    Oxidative stress and pro-apoptotic conditions in a rodent model of Wilson's disease.

    Get PDF
    Wilson's disease (WD) is an inherited disorder, characterized by selective copper deposition in liver and brain, chronic hepatitis and extrapyramidal signs. In this study, we investigated changes of biochemical markers of oxidative stress and apoptosis in liver, striatum and cerebral cortex homogenates from Long-Evans Cinnamon (LEC) rats, a mutant strain isolated from Long Evans (LE) rats, in whom spontaneous hepatitis develops shortly after birth. LEC and control (LE) rats at I I and 14 weeks of age were used. We determined tissue levels of glutathione (GSH/GSSG ratio), lipid peroxides, protein-thiols (P-SH), nitric oxide metabolites, activities of caspase-3 and total superoxide-dismutase (SOD), striatal levels of monoamines and serum levels of hepatic amino-transferases. We observed a decrease of protein-thiols, GSH/GSSG ratio and nitrogen species associated to increased lipid peroxidation in the liver and striatum - but not in the cerebral cortex - of LEC rats, accompanied by dramatic increase in serum amino-transferases and decrease of striatal catecholamines. Conversely, SOD and caspase-3 activity increased consistently only in the cortex of LEC rats. Hence, we assume that enhanced oxidative stress may play a central role in the cell degeneration in WD, at the main sites of copper deposition, with discrete pro-apoptotic conditions developing in distal areas

    Transient expression of reck under hepatic ischemia/reperfusion conditions is associated with mapk signaling pathways

    Get PDF
    In this study, we demonstrated the involvement of matrix metalloproteinases (MMPs) in hepatic ischemia/reperfusion (I/R) injury. Our aim is to evaluate the impact of reperfusion on I/R-related changes in RECK, an MMP modulator, and mitogen-activated protein kinase (MAPKs) pathways (ERK, p38, and JNK). Male Wistar rats were either subjected to 60 min partial-hepatic ischemia or sham-operated. After a 60 min or 120 min reperfusion, liver samples were collected for analysis of MMP-2 and MMP-9 by zymography and RECK, TIMP-1, and TIMP-2 content, MAPKs activation (ERK1/2, JNK1/2, and p38), as well as iNOS and eNOS by Western blot. Serum enzymes AST, ALT, and alkaline-phosphatase were quantified. A transitory decrease in hepatic RECK and TIMPs was associated with a transitory increase in both MMP-2 and MMP-9 activity and a robust activation of ERK1/2, JNK1/2, and p38 were detected at 60 min reperfusion. Hepatic expression of iNOS was maximally upregulated at 120 min reperfusion. An increase in eNOS was detected at 120 min reperfusion. I/R evoked significant hepatic injury in a time-dependent manner. These findings provide new insights into the underlying molecular mechanisms of reperfusion in inducing hepatic injury: a transitory decrease in RECK and TIMPs and increases in both MAPK and MMP activity suggest their role as triggering factors of the organ dysfunction

    Addressing the Donor Liver Shortage with EX VIVO

    Full text link

    THYROXINE PRETREATMENT AND HALOTHANE ADMINISTRATION ALTER CA2+ TRANSPORT AND TRANSMEMBRANE POTENTIAL IN RAT-LIVER MITOCHONDRIA - AN ADDITIONAL MECHANISM FOR HALOTHANE-INDUCED LIVER-DAMAGE IN THE HYPERTHYROID RAT MODEL

    No full text
    Male rats pretreated with thyroid hormones and exposed to halothane in non-hypoxic conditions develop acute liver damage. In order to investigate the mechanisms leading to liver damage in this animal model, the effects of thyroxine (T-4) pretreatment and halothane administration on Ca2+ transport and transmembrane potential were studied in isolated rat liver mitochondria. Five-day T-4-pretreatment reduced the mitochondrial Ca2+ loading capacity and increased the rate of Ca2+ cycling across the mitochondrial membrane. Halothane administration further increased Ca2+ cycling and produced a time- and dose-dependent loss of transmembrane potential which was more pronounced in mitochondria from T-4-pretreated rats than in euthyroid animals. When mitochondria from T-4-pretreated rats were incubated in the presence of the Ca2+ chelator EGTA, membrane potential was well preserved. In contrast, when Ca2+ concentration in the extramitochondrial medium was increased, mitochondria deenergization occurred earlier. These findings confirm that alterations in Ca2+ transport and mitochondrial function can be interrelated events and suggest that a Ca2+-dependent, halothane-induced loss of transmembrane potential could participate in generating acute liver damage in hyperthyroid rats exposed to halothane in non-hypoxic conditions
    • …
    corecore