10 research outputs found

    Geographic Distribution of Soybean Aphid Biotypes in the United States and Canada during 2008–2010

    Get PDF
    Soybean aphid (Aphis glycines Matsumura) is a native pest of soybean [Glycine max (L.) Merr.] in eastern Asia and was detected on soybeans in North America in 2000. In 2004, the soybean cultivar Dowling was described to be resistant to soybean aphids with the Rag1 gene for resistance. In 2006, a virulent biotype of soybean aphid in Ohio was reported to proliferate on soybeans with the Rag1 gene. The objective was to survey the occurrence of virulent aphid populations on soybean indicator lines across geographies and years. Nine soybean lines were identified on the basis of their degree of aphid resistance and their importance in breeding programs. Naturally occurring soybean aphid populations were collected in 10 states (Kansas, Illinois, Indiana, Iowa, Michigan, Minnesota, North Dakota, Ohio, South Dakota, and Wisconsin) and the Canadian province of Ontario. The reproductive capacity of field-collected soybean aphid populations was tested on soybean lines; growth rates were compared in no-choice field cages at each geographic region across 3 yr. The occurrence of soybean aphid biotypes was highly variable from year to year and across environments. The frequency of Biotypes 2, 3, and 4 was 54, 18, and 7%, respectively, from the 28 soybean aphid populations collected across 3 yr and 11 environments. Plant introduction (PI) 567598B, a natural gene pyramid of rag1c and rag4, had lowest frequency of soybean aphid colonization (18%). Several factors may have contributed to the variability, including genetic diversity of soybean aphids, parthenogenicity, abundance of the overwintering host buckthorn (Rhamnus spp.), and migratory patterns of soybean aphids across the landscape

    Simultaneous Mutations in Multi-Viral Proteins Are Required for Soybean mosaic virus to Gain Virulence on Soybean Genotypes Carrying Different R Genes

    Get PDF
    BACKGROUND: Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. METHODOLOGY/PRINCIPAL FINDINGS: To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. CONCLUSIONS/SIGNIFICANCE: Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV

    Registration of 7S β-conglycinin α′ and 11S glycinin A3 null food grade soybean Germplasm, HS-161

    No full text
    HS-161 is a 7S β-conglycinin α′ and 11S glycinin A3 null food grade soybean line (Glycine max. L.) with high protein concentration, yellow hilum, and fair food processing quality. It is adapted to areas of southwest Ontario with 3100 or more crop heat units and has a relative maturity of 2.4 (MG 2.4).The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Absence of the A4 peptide in the G4 glycinin subunit of soybean cultivar Enrei is caused by a point mutation in the Gy4 gene

    No full text
    Functional properties of soy proteins for food are closely related to the composition of their storage protein subunits. Using base excision sequence scanning (BESS), we show that the absence of the A4 peptide in the G4 glycinin subunit of the soybean (Glycine max L.) cultivar Enrei was caused by the same point mutation in the Gy4 gene as previously reported in the soybean cultivar Raiden. Although the genetic relationship between Raiden and Enrei is not known, the same point mutation in their Gy4 genes may indicate that they probably share a related origin. The application of BESS to identify single nucleotide polymorphisms (SNPs) as co-dominant markers for marker-assisted selection (MAS) of a recessive null allele is also discussed

    Registration of 7S β-conglycinin α’ and 11S glycinin A4 null food grade soybean Germplasm, HS-162

    No full text
    HS-162 is a 7S β-conglycinin α’ and 11S glycinin A4 null food grade soybean line (Glycine max L.) with high protein concentration, large seed, yellow hilum, and excellent food processing quality. It is adapted to areas of southwest Ontario with 3100 or more crop heat units and has a relative maturity of 2.4 (MG 2.4).The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Mutations in the P3 Protein of Soybean mosaic virus G2 Isolates Determine Virulence on Rsv4-Genotype Soybean

    No full text
    Two Soybean mosaic virus (SMV) G2 isolates, L and L-RB, sharing high-sequence similarly but differing in ability to break Rsv4-mediated resistance in soybean, were investigated. Infectious clones corresponding to these two isolates and their chimeric clones resulting from swapping different regions of genomic cDNA between L and L-RB were constructed. Only L-RB or chimeras containing the middle fragment of L-RB cDNA showed virulence on Rsv4-genotype soybean. Sequence comparison analysis revealed that the middle genomic region of L and L-RB encodes four different amino acids. Point mutagenesis demonstrated that a single amino acid substitution (Q1033K) in the P3 protein determined virulence toward Rsv4 resistance. In addition, six new SMV Rsv4 resistance-breaking isolates, variants of the second passage on Williams 82 infected with the chimeras or mutants noninfectious on soybean carrying Rsv4, were obtained. Sequencing data indicated that these new isolates contain either the Q1033K mutation or a new substitution (G1054R) in P3. Site-directed mutagenesis confirmed the virulence role of the G1054R mutation on Rsv4-genotype soybean. Taken together, these data suggest that P3 of the SMV G2 strain is an avirulent determinant for Rsv4 and one single nucleotide mutation in P3 may be sufficient to compromise its elicitor function

    Geographic Distribution of Soybean Aphid Biotypes in the United States and Canada during 2008–2010

    No full text
    Soybean aphid (Aphis glycines Matsumura) is a native pest of soybean [Glycine max (L.) Merr.] in eastern Asia and was detected on soybeans in North America in 2000. In 2004, the soybean cultivar Dowling was described to be resistant to soybean aphids with the Rag1 gene for resistance. In 2006, a virulent biotype of soybean aphid in Ohio was reported to proliferate on soybeans with the Rag1 gene. The objective was to survey the occurrence of virulent aphid populations on soybean indicator lines across geographies and years. Nine soybean lines were identified on the basis of their degree of aphid resistance and their importance in breeding programs. Naturally occurring soybean aphid populations were collected in 10 states (Kansas, Illinois, Indiana, Iowa, Michigan, Minnesota, North Dakota, Ohio, South Dakota, and Wisconsin) and the Canadian province of Ontario. The reproductive capacity of field-collected soybean aphid populations was tested on soybean lines; growth rates were compared in no-choice field cages at each geographic region across 3 yr. The occurrence of soybean aphid biotypes was highly variable from year to year and across environments. The frequency of Biotypes 2, 3, and 4 was 54, 18, and 7%, respectively, from the 28 soybean aphid populations collected across 3 yr and 11 environments. Plant introduction (PI) 567598B, a natural gene pyramid of rag1c and rag4, had lowest frequency of soybean aphid colonization (18%). Several factors may have contributed to the variability, including genetic diversity of soybean aphids, parthenogenicity, abundance of the overwintering host buckthorn (Rhamnus spp.), and migratory patterns of soybean aphids across the landscape.This article is published as Cooper, Susannah G., Vergel Concibido, Ronald Estes, David Hunt, Guo-Liang Jiang, Christian Krupke, Brian McCornack et al. "Geographic distribution of soybean aphid biotypes in the United States and Canada during 2008–2010." Crop science 55, no. 6 (2015): 2598-2608. doi: 10.2135/cropsci2014.11.0758. </p
    corecore