332 research outputs found

    Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC

    Full text link
    We report the realization of the optically induced inverse population of the ground-state spin sublevels of the silicon vacancies (VSiV_{\mathrm{Si}}) in silicon carbide (SiC) at room temperature. The data show that the probed silicon vacancy spin ensemble can be prepared in a coherent superposition of the spin states. Rabi nutations persist for more than 80 μ\mus. Two opposite schemes of the optical alignment of the populations between the ground-state spin sublevels of the silicon vacancy upon illumination with unpolarized light are realized in 4H- and 6H-SiC at room temperature. These altogether make the silicon vacancy in SiC a very favorable defect for spintronics, quantum information processing, and magnetometry.Comment: 4 pages, 3 picture

    Clustering of Primordial Black Holes. II. Evolution of Bound Systems

    Full text link
    Primordial Black Holes (PBHs) that form from the collapse of density perturbations are more clustered than the underlying density field. In a previous paper, we showed the constraints that this has on the prospects of PBH dark matter. In this paper we examine another consequence of this clustering: the formation of bound systems of PBHs in the early universe. These would hypothetically be the earliest gravitationally collapsed structures, forming when the universe is still radiation dominated. Depending upon the size and occupation of the clusters, PBH merging occurs before they would have otherwise evaporated due to Hawking evaporation.Comment: 23 pages, 1 figure. Submitted to PR

    Provenance of Kalahari Sand: Paleoweathering and recycling in a linked fluvial-aeolian system

    Get PDF
    We here review what is known about the dunefields and fluvial systems of the Kalahari Basin in terms of geological setting and Quaternary dynamics and set out what has been hypothesized about the provenance of Kalahari sand so far. Previous work has tackled this problem by applying a limited number of techniques (mostly sediment textures and heavy minerals) to parts of the large dryland. The generally highly quartzose mineralogy of aeolian dunes and their compositional variability have been only broadly evaluated and several sedimentological issues have thus remained controversial, including the relative role played by fluvial processes versus aeolian reworking of older sediments and weathering controls. This reveals a need for a systematic provenance study that considers the entire basin. For this reason, here we combine original petrographic, heavy-mineral, and detrital-zircon geochronology data with previously published clay-mineral, geochemical, and geochronological information to present the first comprehensive provenance study of the vast Kalahari sand sea. Our multi-proxy dataset comprises 100 samples, collected across the Kalahari Basin from 11°S (NW Zambia) to 28°S (NW South Africa) and from 15°E (Angola) to 28°30′W (Zimbabwe). Kalahari aeolian-dune sand mostly consists of monocrystalline quartz associated with durable heavy minerals and thus drastically differs from coastal dunefields of Namibia and Angola, which are notably richer in feldspar, lithic grains, and chemically labile clinopyroxene. The western Kalahari dunefield of southeastern Namibia is distinguished by its quartz-rich feldspatho-quartzose sand, indicating partly first-cycle provenance from the Damara Belt and Mesoproterozoic terranes. Within the basin, supply from Proterozoic outcrops is documented locally. Composition varies notably at the western and eastern edges of the sand sea, reflecting partly first-cycle fluvial supply from crystalline basements of Cambrian to Archean age in central Namibia and western Zimbabwe. Basaltic detritus from Jurassic Karoo lavas is dominant in aeolian dunes near Victoria Falls. Bulk-sediment petrography and geochemistry of northern and central Kalahari pure quartzose sand, together with heavy-mineral and clay-mineral assemblages, indicate extensive recycling via aeolian and ephemeral-fluvial processes in arid climate of sediment strongly weathered during previous humid climatic stages in subequatorial Africa. Distilled homogenized composition of aeolian-dune sand thus reverberates the echo of paleo-weathering passed on to the present landscape through multiple episodes of fluvial and aeolian recycling. Intracratonic sag basins such as the Kalahari contain vast amounts of quartz-rich polycyclic sand that may be tapped by rivers eroding backwards during rejuvenation stages associated with rift propagation. Such an event may considerably increase the sediment flux to the ocean, fostering the progradation of river-fed continental-embankments, as documented by augmented accumulation rates coupled with upward increasing mineralogical durability in the post-Tortonian subsurface succession of the Zambezi Delta. The Central Kalahari is not a true desert. It has none of the naked, shifting sand dunes that typify the Sahara and other great deserts of the world. In some years the rains may exceed twenty — once even forty — inches, awakening a magic green paradise.” Mark Owens, Cry of the Kalahari

    Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    Full text link
    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10^(11) GeV - 10^(16) GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes.Comment: accepted for publication in JCA

    Primordial black holes in braneworld cosmologies: astrophysical constraints

    Get PDF
    In two recent papers we explored the modifications to primordial black hole physics when one moves to the simplest braneworld model, Randall--Sundrum type II. Both the evaporation law and the cosmological evolution of the population can be modified, and additionally accretion of energy from the background can be dominant over evaporation at high energies. In this paper we present a detailed study of how this impacts upon various astrophysical constraints, analyzing constraints from the present density, from the present high-energy photon background radiation, from distortion of the microwave background spectrum, and from processes affecting light element abundances both during and after nucleosynthesis. Typically, the constraints on the formation rate of primordial black holes weaken as compared to the standard cosmology if black hole accretion is unimportant at high energies, but can be strengthened in the case of efficient accretion.Comment: 17 pages RevTeX4 file with three figures incorporated; final paper in series astro-ph/0205149 and astro-ph/0208299. Minor changes to match version accepted by Physical Review

    Generalised constraints on the curvature perturbation from primordial black holes

    Full text link
    Primordial black holes (PBHs) can form in the early Universe via the collapse of large density perturbations. There are tight constraints on the abundance of PBHs formed due to their gravitational effects and the consequences of their evaporation. These abundance constraints can be used to constrain the primordial power spectrum, and hence models of inflation, on scales far smaller than those probed by cosmological observations. We compile, and where relevant update, the constraints on the abundance of PBHs before calculating the constraints on the curvature perturbation, taking into account the growth of density perturbations prior to horizon entry. We consider two simple parameterizations of the curvature perturbation spectrum on the scale of interest: constant and power-law. The constraints from PBHs on the amplitude of the power spectrum are typically in the range 10^{-2}-10^{-1} with some scale dependence.Comment: 10 pages, 2 figures, version to appear in Phys. Rev. D with minor change to calculation of constraints for spectral index not equal to on

    Three-dimensional reconstructions of intrahepatic bile duct tubulogenesis in human liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During liver development, intrahepatic bile ducts are thought to arise by a unique asymmetric mode of cholangiocyte tubulogenesis characterized by a series of remodeling stages. Moreover, in liver diseases, cells lining the Canals of Hering can proliferate and generate new hepatic tissue. The aim of this study was to develop protocols for three-dimensional visualization of protein expression, hepatic portal structures and human hepatic cholangiocyte tubulogenesis.</p> <p>Results</p> <p>Protocols were developed to digitally visualize portal vessel branching and protein expression of hepatic cell lineage and extracellular matrix deposition markers in three dimensions. Samples from human prenatal livers ranging from 7 weeks + 2 days to 15½ weeks post conception as well as adult normal and acetaminophen intoxicated liver were used. The markers included cytokeratins (CK) 7 and 19, the epithelial cell adhesion molecule (EpCAM), hepatocyte paraffin 1 (HepPar1), sex determining region Y (SRY)-box 9 (SOX9), laminin, nestin, and aquaporin 1 (AQP1).</p> <p>Digital three-dimensional reconstructions using CK19 as a single marker protein disclosed a fine network of CK19 positive cells in the biliary tree in normal liver and in the extensive ductular reactions originating from intrahepatic bile ducts and branching into the parenchyma of the acetaminophen intoxicated liver. In the developing human liver, three-dimensional reconstructions using multiple marker proteins confirmed that the human intrahepatic biliary tree forms through several developmental stages involving an initial transition of primitive hepatocytes into cholangiocytes shaping the ductal plate followed by a process of maturation and remodeling where the intrahepatic biliary tree develops through an asymmetrical form of cholangiocyte tubulogenesis.</p> <p>Conclusions</p> <p>The developed protocols provide a novel and sophisticated three-dimensional visualization of vessels and protein expression in human liver during development and disease.</p

    DNA Topoisomerase I Gene Copy Number and mRNA Expression Assessed as Predictive Biomarkers for Adjuvant Irinotecan in Stage II/III Colon Cancer.

    Get PDF
    PURPOSE: Prospective-retrospective assessment of theTOP1gene copy number andTOP1mRNA expression as predictive biomarkers for adjuvant irinotecan in stage II/III colon cancer. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded tissue microarrays were obtained from an adjuvant colon cancer trial (PETACC3) where patients were randomized to 5-fluorouracil/folinic acid with or without additional irinotecan.TOP1copy number status was analyzed by fluorescencein situhybridization (FISH) using aTOP1/CEN20 dual-probe combination.TOP1mRNA data were available from previous analyses. RESULTS: TOP1FISH and follow-up data were obtained from 534 patients.TOP1gain was identified in 27% using a single-probe enumeration strategy (≥4TOP1signals per cell) and in 31% when defined by aTOP1/CEN20 ratio ≥ 1.5. The effect of additional irinotecan was not dependent onTOP1FISH status.TOP1mRNA data were available from 580 patients with stage III disease. Benefit of irinotecan was restricted to patients characterized byTOP1mRNA expression ≥ third quartile (RFS: HRadjusted, 0.59;P= 0.09; OS: HRadjusted, 0.44;P= 0.03). The treatment byTOP1mRNA interaction was not statistically significant, but in exploratory multivariable fractional polynomial interaction analysis, increasingTOP1mRNA values appeared to be associated with increasing benefit of irinotecan. CONCLUSIONS: In contrast to theTOP1copy number, a trend was demonstrated for a predictive property ofTOP1mRNA expression. On the basis ofTOP1mRNA, it might be possible to identify a subgroup of patients where an irinotecan doublet is a clinically relevant option in the adjuvant setting of colon cancer.Clin Cancer Res; 22(7); 1621-31. ©2015 AACR
    corecore