147 research outputs found

    Understanding DNA based Nanostructures

    Get PDF
    We use molecular dynamics (MD) simulations to understand the structure, and stability of various Paranemic crossover (PX) DNA molecules and their topoisomer JX molecules, synthesized recently by Seeman and coworkers at New York University (NYU). Our studies include all atoms (4432 to 6215) of the PX structures with an explicit description of solvent and ions (for a total of up to 42,000 atoms) with periodic boundary conditions. We report the effect of divalent counterions Mg(+2) on the structural and thermodynamic properties of these molecules and compare them to our previously reported results in presence of monovalent Na+ ions. The dynamic structures averaged over the 3-nanosecond simulations preserves the Watson-Crick hydrogen bonding as well as the helical structure. We find that PX65 is the most stable structure both in Na+ and Mg(+2) in accordance with the experimental results. PX65 has helical twist and other helical structural parameters close to the values for normal B-DNA of similar length and sequence. Our strain energy calculations demonstrate that stability of the crossover structure increases with the increase in crossover points

    The Yrast Spectra of Weakly Interacting Bose-Einstein Condensates

    Get PDF
    The low energy quantal spectrum is considered as a function of the total angular momentum for a system of weakly interacting bosonic atoms held together by an external isotropic harmonic potential. It is found that besides the usual condensation into the lowest state of the oscillator, the system exhibits two additional kinds of condensate and associated thermodynamic phase transitions. These new phenomena are derived from the degrees of freedom of "partition space" which describes the multitude of different ways in which the angular momentum can be distributed among the atoms while remaining all the time in the lowest state of the oscillator

    Prediction of the 3-D structure of rat MrgA G protein-coupled receptor and identification of its binding site

    Get PDF
    Mrg receptors are orphan G protein-coupled receptors (GPCRs) located mainly at the specific set of sensory neurons in the dorsal root ganglia, suggesting a role in nociception. We report here the 3-D structure of rat MrgA (rMrgA) receptor [obtained from homology modeling to the recently validated predicted structures of mouse MrgA1 and MrgC11] and the structure of adenine (a known agonist, Ki = 18 nM) bound to rMrgA. This predicted binding site is located within transmembrane helical domains (TMs) 3, 4, 5 and 6, with Asn residues in TM3 and TM4 identified as the key residues for adenine binding. Here the side chain of Asn88 (TM3) forms two pairs of hydrogen bonds with N3 and N9 of adenine while Asn146 (TM4) makes two pairs of hydrogen bonds with N1 and N6 of adenine. These interactions lock adenine tightly in the binding pocket. We also predict the binding site of guanine (not an agonist) and seven other derivatives. Guanine cannot make the hydrogen bond to Asn146 (TM4), leading to binding too weak to be observed experimentally. The predicted binding affinity for other adenine derivatives correlates with the availability of the hydrogen bonds to these two Asn residues. These results validate the predicted structure for rat MrgA and suggest mutation experiments that could further validate the structure. Moreover, the predicted structure and binding site should be useful for seeking other small molecule agonists and antagonists

    The pentamer channel stiffening model for drug action on human rhinovirus HRV-1A

    Get PDF
    Development of effective drugs against the rhinovirus (HRV) responsible for the common cold remains a challenge because there are over 100 serotypes. This process could be significantly aided by an understanding of the atomistic mechanism by which such drugs work. We suggest that the most effective drugs against HRV-1A act by stiffening the pentamer channel of the viral coat through which the RNA is released, preventing the steps leading to uncoating. Using molecular dynamics methods we tested this Pentamer Channel Stiffening Model (PCSM) by examining the changes in strain energy associated with opening the pentamer channel through which the RNA is released. We find that the PCSM strain correlates well with the effectiveness of the WIN (Sterling–Winthrop) drugs for HRV-1A. To illustrate the use of the PCSM to predict new drugs and to prioritize experimental tests, we tested three modifications of the WIN drugs that are predicted to be nearly as effective (for HRV-1A) as the best current drug

    Role of Specific Cations and Water Entropy on the Stability of Branched DNA Motif Structures

    Get PDF
    DNA three-way junctions (TWJs) are important intermediates in various cellular processes and are the simplest of a family of branched nucleic acids being considered as scaffolds for biomolecular nanotechnology. Branched nucleic acids are stabilized by divalent cations such as Mg^2+, presumably due to condensation and neutralization of the negatively charged DNA backbone. However, electrostatic screening effects point to more complex solvation dynamics and a large role of interfacial waters in thermodynamic stability. Here, we report extensive computer simulations in explicit water and salt on a model TWJ and use free energy calculations to quantify the role of ionic character and strength on stability. We find that enthalpic stabilization of the first and second hydration shells by Mg^2+ accounts for 1/3 and all of the free energy gain in 50% and pure MgCl_2 solutions, respectively. The more distorted DNA molecule is actually destabilized in pure MgCl_2 compared to pure NaCl. Notably, the first shell, interfacial waters have very low translational and rotational entropy (i.e., mobility) compared to the bulk, an entropic loss that is overcompensated by increased enthalpy from additional electrostatic interactions with Mg^2+. In contrast, the second hydration shell has anomalously high entropy as it is trapped between an immobile and bulklike layer. The nonmonotonic entropic signature and long-range perturbations of the hydration shells to Mg^2+ may have implications in the molecular recognition of these motifs. For example, we find that low salt stabilizes the parallel configuration of the three-way junction, whereas at normal salt we find antiparallel configurations deduced from the NMR. We use the 2PT analysis to follow the thermodynamics of this transition and find that the free energy barrier is dominated by entropic effects that result from the decreased surface area of the antiparallel form which has a smaller number of low entropy waters in the first monolayer

    Fidelity of Phenylalanyl-tRNA Synthetase in Binding the Natural Amino Acids

    Get PDF
    Aminoacyl-tRNA synthetases guard the fidelity of cognate amino acid incorporation during protein biosynthesis; for example, phenylalanyl-tRNA synthetase (PheRS) activates and transfers only Phe to its tRNA. Since we are interested in using a computational protocol to identify nonnatural amino acids that are incorporated by wild-type PheRS, it is critical to understand the fidelity of PheRS in binding the 20 natural amino acids. To this end, HierDock, a computational protocol for predicting binding sites and relative binding affinities, was used for testing the natural amino acids in PheRS. Scanning the entire ligand-accessible protein surface for the best binding region, we find that HierDock correctly identifies the active site of Phe in PheRS and predicts Phe within 0.61 Å RMSD of the crystal structure. HierDock also successfully shows PheRS discriminates for Phe, as the noncognate amino acids bind less favorably in the binding site of Phe. However, we find that Met, Cys, and Tyr bind competitively but at positions distant from the Phe binding site. This result corroborates in vitro measurements of aminoacyl adenylate formation, which show Met competes with Phe at the amino acid binding stage. We predict that the binding site of Met would not activate PheRS, as the noncognate amino acid cannot establish suitable hydrogen bonds with the PheRS reaction center. These results validate the use of HierDock in predicting the binding sites of the cognate amino acids in PheRS. The HierDock procedure calculates the discrimination of aminoacyl-tRNA synthetases at the stage of binding the cognate amino acid and offers a molecular level understanding of the mistakes made in protein biosynthesis that are not readily uncovered through experiments. This technique is also useful for predicting the binding of a selected nonnatural amino acid analogue, thereby indicating whether the molecule would be incorporated into a wild-type aminoacyl-tRNA synthetase

    Test of the Binding Threshold Hypothesis for olfactory receptors: Explanation of the differential binding of ketones to the mouse and human orthologs of olfactory receptor 912-93

    Get PDF
    We tested the Binding Threshold Hypothesis (BTH) for activation of olfactory receptors (ORs): To activate an OR, the odorant must bind to the OR with binding energy above some threshold value. The olfactory receptor (OR) 912‐93 is known experimentally to be activated by ketones in mouse, but is inactive to ketones in human, despite an amino acid sequence identity of ∼66%. To investigate the origins of this difference, we used the MembStruk first‐principles method to predict the tertiary structure of the mouse OR 912‐93 (mOR912‐93), and the HierDock first‐principles method to predict the binding site for ketones to this receptor. We found that the strong binding of ketones to mOR912‐93 is dominated by a hydrogen bond of the ketone carbonyl group to Ser105. All ketones predicted to have a binding energy stronger than E_(BindThresh) = 26 kcal/mol were observed experimentally to activate this OR, while the two ketones predicted to bind more weakly do not. In addition, we predict that 2‐undecanone and 2‐dodecanone both bind sufficiently strongly to activate mOR912‐93. A similar binding site for ketones was predicted in hOR912‐93, but the binding is much weaker because the human ortholog has a Gly at the position of Ser105. We predict that mutating this Gly to Ser in human should lead to activation of hOR912‐93 by these ketones. Experimental substantiations of the above predictions would provide further tests of the validity of the BTH, our predicted 3D structures, and our predicted binding sites for these ORs
    corecore