29 research outputs found

    The acute neurotoxicity of mefloquine may be mediated through a disruption of calcium homeostasis and ER function in vitro

    Get PDF
    BACKGROUND: There is no established biochemical basis for the neurotoxicity of mefloquine. We investigated the possibility that the acute in vitro neurotoxicity of mefloquine might be mediated through a disruptive effect of the drug on endoplasmic reticulum (ER) calcium homeostasis. METHODS: Laser scanning confocal microscopy was employed to monitor real-time changes in basal intracellular calcium concentrations in embryonic rat neurons in response to mefloquine and thapsigargin (a known inhibitor of the ER calcium pump) in the presence and absence of external calcium. Changes in the transcriptional regulation of known ER stress response genes in neurons by mefloquine were investigated using Affymetrix arrays. The MTT assay was employed to measure the acute neurotoxicity of mefloquine and its antagonisation by thapsigargin. RESULTS: At physiologically relevant concentrations mefloquine was found to mobilize neuronal ER calcium stores and antagonize the pharmacological action of thapsigargin, a specific inhibitor of the ER calcium pump. Mefloquine also induced a sustained influx of extra-neuronal calcium via an unknown mechanism. The transcription of key ER proteins including GADD153, PERK, GRP78, PDI, GRP94 and calreticulin were up-regulated by mefloquine, suggesting that the drug induced an ER stress response. These effects appear to be related, in terms of dose effect and kinetics of action, to the acute neurotoxicity of the drug in vitro. CONCLUSIONS: Mefloquine was found to disrupt neuronal calcium homeostasis and induce an ER stress response at physiologically relevant concentrations, effects that may contribute, at least in part, to the neurotoxicity of the drug in vitro

    Identification and utilization of inter-species conserved (ISC) probesets on Affymetrix human GeneChip(® )platforms for the optimization of the assessment of expression patterns in non human primate (NHP) samples

    Get PDF
    BACKGROUND: While researchers have utilized versions of the Affymetrix human GeneChip(® )for the assessment of expression patterns in non human primate (NHP) samples, there has been no comprehensive sequence analysis study undertaken to demonstrate that the probe sequences designed to detect human transcripts are reliably hybridizing with their orthologs in NHP. By aligning probe sequences with expressed sequence tags (ESTs) in NHP, inter-species conserved (ISC) probesets, which have two or more probes complementary to ESTs in NHP, were identified on human GeneChip(® )platforms. The utility of human GeneChips(® )for the assessment of NHP expression patterns can be effectively evaluated by analyzing the hybridization behaviour of ISC probesets. Appropriate normalization methods were identified that further improve the reliability of human GeneChips(® )for interspecies (human vs NHP) comparisons. RESULTS: ISC probesets in each of the seven Affymetrix GeneChip(® )platforms (U133Plus2.0, U133A, U133B, U95Av2, U95B, Focus and HuGeneFL) were identified for both monkey and chimpanzee. Expression data was generated from peripheral blood mononuclear cells (PBMCs) of 12 human and 8 monkey (Indian origin Rhesus macaque) samples using the Focus GeneChip(®). Analysis of both qualitative detection calls and quantitative signal intensities showed that intra-species reproducibility (human vs. human or monkey vs. monkey) was much higher than interspecies reproducibility (human vs. monkey). ISC probesets exhibited higher interspecies reproducibility than the overall expressed probesets. Importantly, appropriate normalization methods could be leveraged to greatly improve interspecies correlations. The correlation coefficients between human (average of 12 samples) and monkey (average of 8 Rhesus macaque samples) are 0.725, 0.821 and 0.893 for MAS5.0 (Microarray Suite version 5.0), dChip and RMA (Robust Multi-chip Average) normalization method, respectively. CONCLUSION: It is feasible to use Affymetrix human GeneChip(® )platforms to assess the expression profiles of NHP for intra-species studies. Caution must be taken for interspecies studies since unsuitable probesets will result in spurious differentially regulated genes between human and NHP. RMA normalization method and ISC probesets are recommended for interspecies studies

    A Double-Blind Randomized Phase I Clinical Trial Targeting ALVAC-HIV Vaccine to Human Dendritic Cells

    Get PDF
    BACKGROUND: We conducted a novel pilot study comparing different delivery routes of ALVAC-HIV (vCP205), a canarypox vaccine containing HIV gene inserts: env, gag and pol. We explored the concept that direct ex vivo targeting of human dendritic cells (DC) would enhance the immune response compared to either conventional intramuscular or intradermal injections of the vaccine alone. METHODOLOGY/PRINCIPAL FINDINGS: Healthy HIV-1 uninfected volunteers were administered ALVAC-HIV or placebo by intramuscular injection (i.m.), intradermal injection (i.d.) or subcutaneous injection (s.q.) of autologous ex vivo transfected DC at months 0, 1, 3 and 6. All vaccine delivery routes were well tolerated. Binding antibodies were observed to both the ALVAC vector and HIV-1 gp160 proteins. Modest cellular responses were observed in 2/7 individuals in the DC arm and 1/8 in the i.m. arm as determined by IFN-γ ELISPOT. Proliferative responses were most frequent in the DC arm where 4/7 individuals had measurable responses to multiple HIV-1 antigens. Loading DC after maturation resulted in lower gene expression, but overall better responses to both HIV-1 and control antigens, and were associated with better IL-2, TNF-α and IFN-γ production. CONCLUSIONS/SIGNIFICANCE: ALVAC-HIV delivered i.m., i.d. or s.q. with autologous ex vivo transfected DC proved to be safe. The DC arm was most immunogenic. Proliferative immune responses were readily detected with only modest cytotoxic CD8 T cell responses. Loading mature DC with the live viral vaccine induced stronger immune responses than loading immature DC, despite increased transgene expression with the latter approach. Volunteers who received the autologous vaccine loaded mature DC developed a broader and durable immune response compared to those vaccinated by conventional routes. TRIAL REGISTRATION: ClinicalTrials.gov NCT00013572

    Genome-Wide Expression Profiling in Malaria Infection Reveals Transcriptional Changes Associated with Lethal and Nonlethal Outcomes

    No full text
    High-density oligonucleotide microarrays are widely used to study gene expression in cells exposed to a variety of pathogens. This study addressed the global genome-wide transcriptional activation of genes in hosts infected in vivo, which result in radically different clinical outcomes. We present an analysis of the gene expression profiles that identified a set of host biomarkers which distinguish between lethal and nonlethal blood stage Plasmodium yoelii malaria infections. Multiple biological replicates sampled during the course of infection were used to establish statistically valid sets of differentially expressed genes. These genes that correlated with the intensity of infection were used to identify pathways of cellular processes related to metabolic perturbations, erythropoiesis, and B-cell immune responses and other innate and cellular immune responses. The transcriptional apparatus that controls gene expression in erythropoiesis was also differentially expressed and regulated the expression of target genes involved in the host's response to malaria anemia. The biological systems approach provides unprecedented opportunities to explore the pathophysiology of host-pathogen interactions in experimental malaria infection and to decipher functionally complex networks of gene and protein interactions

    Technical Assessment of the Affymetrix Yeast Expression GeneChip YE6100 Platform in a Heterologous Model of Genes That Confer Resistance to Antimalarial Drugs in Yeast

    No full text
    The advent of high-density gene array technology has revolutionized approaches to drug design, development, and characterization. At the laboratory level, the efficient, consistent, and dependable exploitation of this complex technology requires the stringent standardization of protocols and data analysis platforms. The Affymetrix YE6100 expression GeneChip platform was evaluated for its performance in the analysis of both global (6,000 yeast genes) and targeted (three pleiotropic multidrug resistance genes of the ATP binding cassette transporter family) gene expression in a heterologous yeast model system in the presence and absence of the antimalarial drug chloroquine. Critical to the generation of consistent data from this platform are issues involving the preparation of the specimen, use of appropriate controls, accurate assessment of experiment variance, strict adherence to optimized enzymatic and hybridization protocols, and use of sophisticated bioinformatics tools for data analysis
    corecore