2 research outputs found

    Proof-of-Concept Organ-on-Chip Study: Topical Cinnamaldehyde Exposure of Reconstructed Human Skin with Integrated Neopapillae Cultured under Dynamic Flow

    Get PDF
    Pharmaceutical and personal care industries require human representative models for testing to ensure the safety of their products. A major route of penetration into our body after substance exposure is via the skin. Our aim was to generate robust culture conditions for a next generation human skin-on-chip model containing neopapillae and to establish proof-of-concept testing with the sensitizer, cinnamaldehyde. Reconstructed human skin consisting of a stratified and differentiated epidermis on a fibroblast populated hydrogel containing neopapillae spheroids (RhS-NP), were cultured air-exposed and under dynamic flow for 10 days. The robustness of three independent experiments, each with up to 21 intra-experiment replicates, was investigated. The epidermis was seen to invaginate into the hydrogel towards the neopapille spheroids. Daily measurements of lactate dehydrogenase (LDH) and glucose levels within the culture medium demonstrated high viability and stable metabolic activity throughout the culture period in all three independent experiments and in the replicates within an experiment. Topical cinnamaldehyde exposure to RhS-NP resulted in dose-dependent cytotoxicity (increased LDH release) and elevated cytokine secretion of contact sensitizer specific IL-18, pro-inflammatory IL-1β, inflammatory IL-23 and IFN-γ, as well as anti-inflammatory IL-10 and IL-12p70. This study demonstrates the robustness and feasibility of complex next generation skin models for investigating skin immunotoxicity

    Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro

    No full text
    Application of reconstructed human Skin (RhS) is a promising approach for the treatment of extensive wounds and for drug efficacy and safety testing. However, incorporating appendages, such as hair follicles, into RhS still remains a challenge. The hair follicle plays a critical role in thermal regulation, dispersion of sweat and sebum, sensory and tactile functions, skin regeneration, and repigmentation. The aim of this study was to determine whether human neopapilla could be incorporated into RhS (differentiated epidermis on fibroblast and endothelial cell populated dermis) and whether the neopapillae maintain their inductive follicular properties in vitro. Neopapillae spheroids, constructed from expanded and self-aggregating dermal papilla cells, synthesized extracellular matrix typically found in follicular papillae. Compared with dermal fibroblasts, neopapillae showed increased expression of multiple genes (Wnt5a, Wnt10b, and LEF1) known to regulate hair development and also increased secretion of CXCL1, which is a strong keratinocyte chemoattractant. When neopapillae were incorporated into the dermis of RhS, they stimulated epidermal down-growth resulting in engulfment of the neopapillae sphere. Similar to the native hair follicle, the differentiated invaginating epidermis inner side was keratin 10 positive and the undifferentiated outer side keratin 10 negative. The outer side was keratin 15 positive confirming the undifferentiated nature of these keratinocytes aligning a newly formed collagen IV, laminin V positive basement membrane within the hydrogel. In conclusion, we describe a RhS model containing neopapillae with hair follicle-inductive properties. Importantly, epidermal invagination occurred to engulf the neopapillae, thus demonstrating in vitro the first steps towards hair follicle morphogenesis in RhS
    corecore