6 research outputs found

    Comparison of different similarity measures in hierarchical clustering

    Get PDF
    The management of datasets containing heterogeneous types of data is a crucial point in the context of precision medicine, where genetic, environmental, and life-style information of each individual has to be analyzed simultaneously. Clustering represents a powerful method, used in data mining, for extracting new useful knowledge from unlabeled datasets. Clustering methods are essentially distance-based, since they measure the similarity (or the distance) between two elements or one element and the cluster centroid. However, the selection of the distance metric is not a trivial task: it could influence the clustering results and, thus, the extracted information. In this study we analyze the impact of four similarity measures (Manhattan or L1 distance, Euclidean or L2 distance, Chebyshev or L∞ distance and Gower distance) on the clustering results obtained for datasets containing different types of variables. We applied hierarchical clustering combined with an automatic cut point selection method to six datasets publicly available on the UCI Repository. Four different clusterizations were obtained for every dataset (one for each distance) and were analyzed in terms of number of clusters, number of elements in each cluster, and cluster centroids. Our results showed that changing the distance metric produces substantial modifications in the obtained clusters. This behavior is particularly evident for datasets containing heterogeneous variables. Thus, the choice of the distance measure should not be done a-priori but evaluated according to the set of data to be analyzed and the task to be accomplished

    Artificial intelligence for target prostate biopsy outcomes prediction the potential application of fuzzy logic

    Get PDF
    Background: In current precision prostate cancer (PCa) surgery era the identification of the best patients candidate for prostate biopsy still remains an open issue. The aim of this study was to evaluate if the prostate target biopsy (TB) outcomes could be predicted by using artificial intelligence approach based on a set of clinical pre-biopsy. Methods: Pre-biopsy characteristics in terms of PSA, PSA density, digital rectal examination (DRE), previous prostate biopsies, number of suspicious lesions at mp-MRI, lesion volume, lesion location, and Pi-Rads score were extracted from our prospectively maintained TB database from March 2014 to December 2019. Our approach is based on Fuzzy logic and associative rules mining, with the aim to predict TB outcomes. Results: A total of 1448 patients were included. Using the Frequent-Pattern growth algorithm we extracted 875 rules and used to build the fuzzy classifier. 963 subjects were classified whereas for the remaining 484 subjects were not classified since no rules matched with their input variables. Analyzing the classified subjects we obtained a specificity of 59.2% and sensitivity of 90.8% with a negative and the positive predictive values of 81.3% and 76.6%, respectively. In particular, focusing on ISUP ≄ 3 PCa, our model is able to correctly predict the biopsy outcomes in 98.1% of the cases. Conclusions: In this study we demonstrated that the possibility to look at several pre-biopsy variables simultaneously with artificial intelligence algorithms can improve the prediction of TB outcomes, outclassing the performance of PSA, its derivates and MRI alone

    Impact of bias field correction on 0.35 T pelvic MR images: evaluation on generative adversarial network-based OARs’ auto-segmentation and visual grading assessment

    Get PDF
    PurposeMagnetic resonance imaging (MRI)-guided radiotherapy enables adaptive treatment plans based on daily anatomical changes and accurate organ visualization. However, the bias field artifact can compromise image quality, affecting diagnostic accuracy and quantitative analyses. This study aims to assess the impact of bias field correction on 0.35 T pelvis MRIs by evaluating clinical anatomy visualization and generative adversarial network (GAN) auto-segmentation performance.Materials and methods3D simulation MRIs from 60 prostate cancer patients treated on MR-Linac (0.35 T) were collected and preprocessed with the N4ITK algorithm for bias field correction. A 3D GAN architecture was trained, validated, and tested on 40, 10, and 10 patients, respectively, to auto-segment the organs at risk (OARs) rectum and bladder. The GAN was trained and evaluated either with the original or the bias-corrected MRIs. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95th) were computed for the segmented volumes of each patient. The Wilcoxon signed-rank test assessed the statistical difference of the metrics within OARs, both with and without bias field correction. Five radiation oncologists blindly scored 22 randomly chosen patients in terms of overall image quality and visibility of boundaries (prostate, rectum, bladder, seminal vesicles) of the original and bias-corrected MRIs. Bennett’s S score and Fleiss’ kappa were used to assess the pairwise interrater agreement and the interrater agreement among all the observers, respectively.ResultsIn the test set, the GAN trained and evaluated on original and bias-corrected MRIs showed DSC/HD95th of 0.92/5.63 mm and 0.92/5.91 mm for the bladder and 0.84/10.61 mm and 0.83/9.71 mm for the rectum. No statistical differences in the distribution of the evaluation metrics were found neither for the bladder (DSC: p = 0.07; HD95th: p = 0.35) nor for the rectum (DSC: p = 0.32; HD95th: p = 0.63). From the clinical visual grading assessment, the bias-corrected MRI resulted mostly in either no change or an improvement of the image quality and visualization of the organs’ boundaries compared with the original MRI.ConclusionThe bias field correction did not improve the anatomy visualization from a clinical point of view and the OARs’ auto-segmentation outputs generated by the GAN

    T-Wave alternans identification in direct fetal electrocardiography

    No full text
    Very little is known about the incidence and etiology of fetal T-wave alternans (TWA), an electrophysiologic phenomenon potentially associated to fetal suboptimal outcomes. Thus, availability of automatic methods for quantification of TWA from digital electrocardiograms (ECG) is desirable, since TWA occurrence might indicate the need of taking actions before or during delivery. The heart-rate adaptive match filter (HRAMF) is a wellestablished method to identify TWA in adult ECG. Aim of the present study was to investigate the possibility of using HRAMF to identify and quantify TWA also in direct fetal ECG (DFECG) recordings. To this aim, HRAMF was applied to 5 min-long DFECG acquired during delivery (“Abdominal and Direct Fetal Electrocardiogram Database” by Physionet) of five healthy fetuses. Significant levels of TWA were measured in all DFECG. Specifically, on average, TWA was quite high in amplitude (9±2 ”V) and variable in time, as indicated by values of standard deviation (6±2 ”V) and maximum (28±10 ”V) of TWA amplitude. Eventually, a positive correlation (ρ=0.68) was observed between maximum TWA and fetal heart rate, even though the limited number of recordings makes this result preliminary. In conclusion, HRAMF proved to be a suitable tool to automatically identify TWA from DFECG

    Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation

    Get PDF
    Background Online adaptive radiation therapy (RT) using hybrid magnetic resonance linear accelerators (MR-Linacs) can administer a tailored radiation dose at each treatment fraction. Daily MR imaging followed by organ and target segmentation adjustments allow to capture anatomical changes, improve target volume coverage, and reduce the risk of side effects. The introduction of automatic segmentation techniques could help to further improve the online adaptive workflow by shortening the re-contouring time and reducing intra- and inter-observer variability. In fractionated RT, prior knowledge, such as planning images and manual expert contours, is usually available before irradiation, but not used by current artificial intelligence-based autocontouring approaches. Purpose The goal of this study was to train convolutional neural networks (CNNs) for automatic segmentation of bladder, rectum (organs at risk, OARs), and clinical target volume (CTV) for prostate cancer patients treated at 0.35 T MR-Linacs. Furthermore, we tested the CNNs generalization on data from independent facilities and compared them with the MR-Linac treatment planning system (TPS) propagated structures currently used in clinics. Finally, expert planning delineations were utilized for patient- (PS) and facility-specific (FS) transfer learning to improve auto-segmentation of CTV and OARs on fraction images. Methods In this study, data from fractionated treatments at 0.35 T MR-Linacs were leveraged to develop a 3D U-Net-based automatic segmentation. Cohort C1 had 73 planning images and cohort C2 had 19 planning and 240 fraction images. The baseline models (BMs) were trained solely on C1 planning data using 53 MRIs for training and 10 for validation. To assess their accuracy, the models were tested on three data subsets: (i) 10 C1 planning images not used for training, (ii) 19 C2 planning, and (iii) 240 C2 fraction images. BMs also served as a starting point for FS and PS transfer learning, where the planning images from C2 were used for network parameter fine tuning. The segmentation output of the different trained models was compared against expert ground truth by means of geometric metrics. Moreover, a trained physician graded the network segmentations as well as the segmentations propagated by the clinical TPS. Results The BMs showed dice similarity coefficients (DSC) of 0.88(4) and 0.93(3) for the rectum and the bladder, respectively, independent of the facility. CTV segmentation with the BM was the best for intermediate- and high-risk cancer patients from C1 with DSC=0.84(5) and worst for C2 with DSC=0.74(7). The PS transfer learning brought a significant improvement in the CTV segmentation, yielding DSC=0.72(4) for post-prostatectomy and low-risk patients and DSC=0.88(5) for intermediate- and high-risk patients. The FS training did not improve the segmentation accuracy considerably. The physician's assessment of the TPS-propagated versus network-generated structures showed a clear advantage of the latter. Conclusions The obtained results showed that the presented segmentation technique has potential to improve automatic segmentation for MR-guided RT

    Evaluation of clinical parallel workflow in online adaptive MR-guided Radiotherapy: A detailed assessment of treatment session times

    No full text
    Introduction: Advancements in MRI-guided radiotherapy (MRgRT) enable clinical parallel workflows (CPW) for online adaptive planning (oART), allowing medical physicists (MPs), physicians (MDs), and radiation therapists (RTTs) to perform their tasks simultaneously. This study evaluates the impact of this upgrade on the total treatment time by analyzing each step of the current 0.35T-MRgRT workflow. Methods: The time process of the workflow steps for 254 treatment fractions in 0.35 MRgRT was examined. Patients have been grouped based on disease site, breathing modality (BM) (BHI or FB), and fractionation (stereotactic body RT [SBRT] or standard fractionated long course [LC]). The time spent for the following workflow steps in Adaptive Treatment (ADP) was analyzed: Patient Setup Time (PSt), MRI Acquisition and Matching (MRt), MR Re-contouring Time (RCt), Re-Planning Time (RPt), Treatment Delivery Time (TDt). Also analyzed was the timing of treatments that followed a Simple workflow (SMP), without the online re-planning (PSt + MRt + TDt.). Results: The time analysis revealed that the ADP workflow (median: 34 min) is significantly (p < 0.05) longer than the SMP workflow (19 min). The time required for ADP treatments is significantly influenced by TDt, constituting 40 % of the total time. The oART steps (RCt + RPt) took 11 min (median), representing 27 % of the entire procedure. Overall, 79.2 % of oART fractions were completed in less than 45 min, and 30.6 % were completed in less than 30 min. Conclusion: This preliminary analysis, along with the comparative assessment against existing literature, underscores the potential of CPW to diminish the overall treatment duration in MRgRT-oART. Additionally, it suggests the potential for CPW to promote a more integrated multidisciplinary approach in the execution of oART
    corecore